MEGGITT (OECO)

- Samuel Dorning
- EE
- 1st internship
- Milwaukee (Portland area)
- company:
 - focus on aerospace, defense, energy products
 - produced parts for Apollo Moon landing
 - New product development, sustaining engineering
 - NLI PCB testing
 - converts DC to AC
 - testing boards that were going into units
 - catch any errors in the board before assembly
 - used standard lab equipment
 - founds multiple issues (supplier side) which saved OECO paperwork, time, and money
 - DGCU Rework
 - goal: verify new voltage regulator circuit to handle more ripple
 - tested new schematic
 - created instructions on how to modify board
 - troubleshoot new design
 - created test plan, ran tests, and documented results of generator & induced ripple
 - Results: new design exceeded expectations and moved forward with confidence
 - RAT GCU Root Cause Analysis and Redesign
 - generator control unit and backup generator for aircraft
 - goal: find out why signals were behaving different and what could be changed to fix the issue and meet new spec
 - compare BOM of each version and looked for part differences in the circuits relating o the signal
 - Ltspice modeled each version and simulated them
 - tested how component tolerances could affect results
 - result: let customer know why GCUs were behaving differently (left before whole process was complete
 - Overall: worked with a lot of analog circuits
 - component tolerances
- military regulations
- documentation is very important
- Ltspice skills
- Altium (for laying out circuits and schematics)
- relatively small engineering staff (10-15 people)
- "high performance culture"
- military/aerospace terminology took some getting used to

Datalogic
- Quinn Handley
- CPE (computer engineering)
- 1st internship
- italian-based company
- 2-3K employees
- Eugene dept.
- company:
 - mobile scanners, barcode scanners, RFID, etc.
 - lots of R&D in Eugene
 - **Intro to Embedded ARM**
 - everything in the name of performance and speed
 - ARM neon SIMD coprocessor
 - testing & development on raspberry pi III
 - sliding window algorithm exercise- perform a set of operations on a data array. Set size of array
 - parallel operations are hard, but rewarding
 - **Code optimization for image processing library**
 - optimizing image processing algorithms (box filters)
 - used to find barcodes and reduce errors
 - needed to be very fast
 - integrating optimized code into linear bar code localizer application
 - unit testing (performance, correctness, memory access)
 - Version control with git and GitLab
 - learned:
 - very independent work situation; set own work flow.
 - all programming in C++
 - code optimization
 - effective communication
 - parallel programming
Brown and Caldwell
- Ryan Bay
- 1st internship
- EE
- environmental engineering
- 1700 people
- portland

projects:
 - Forest grove secondary clarifier
 - site plan
 - conduit/cable routing and sizing (underground routing)
 - must be oversized to avoid overheating
 - motor control schematics
 - VFD driven RAS pumps
 - Instrumentation to monitor and control RAS flow (FITs and LITs)
 - Loop Diagrams to describe instrumentation
 - overall: how to automate/power systems
 - oak lodge belt filter press retrofit
 - city of Vancouver industrial pre-treatment lagoon upgrade

learned:
- reading and designing electrical construction diagrams
- autoCAD

Cognex- Jessica Peterson
- first internship
- EE
- Machine vision for manufacturing facilities
- Portland, headquarters in Massachusetts
- Portland campus = 50; total employees = 2000

I/O breakout box
- provide inexpensive breakout for new cameras to prevent the use of flying lead cables in wiring
- provides landing points for the inputs and outputs
- small, compact, and mounting on din rails
- protect circuit from large impulses

Firmware verification
Input test box
LabVIEW test program
- verify power supplies (automate the procedure)
- visual-based programming
 - someone without programming background can understand it
Firmware Snippets and debugging
- checked register declarations

Cisco Systems- Alex Molisani
• first internship
• CPE
• Beaverton
• 20 people
• BMC group
 ◦ baseboard management controller- small chip on server that provides data about server health
 ◦ create interface to and software for the BMC
 ◦ C programming for the BMC and Python for build tree
• Unified event manager

• Consent tokens
• Python Oak configuration GUI
• Build Tree enhancements
• KVM development
 ◦ Keyboard video
• Increased knowledge of C, makefile, python
• working within a large code base and within a terminal
• writing more secure code

ATI - Richard Smith
• 1st internship
• EE
• department = 50; total plant = 1000-1500
• makes high-performance metals and alloys
 ◦ Zr fuel rods for nuclear reactors
 ◦ NbTi superconductor found in 90% of world's MRI machines
 ◦ Ti64 rod used in all SpaceX engine nozzles
• Zirc Spone Handling Upgrades (smaller)
 ◦ sponge refers to a 3/4" minus metal gravel
 ◦ create in crushers, alloyed in blenders
 ◦ crushers produce a by-produce called "fines" which are highly flammable
 ◦ "fines" are collected
 ◦ Level checked manually via small hole in top of barrel
 ◦ install level sensors and indicator lights
• Chlamine Station Controls Documentation and DeltaV Design (large)
 ◦ equipment that pumps liquid chlorine from rail cars, vaporized it, and sends it into the plant
 ◦ highly hazardous process
 ◦ designed UI for new touchscreens which replaced outdated buttons
 ◦ visual programming in DeltaV control studio
 ◦ wrote 33 page manual documenting UI
• Takeaways:
 ◦ projects in large companies take longer
 ◦ communication is super important
 ◦ pay attention to details
 ▪ NEC (NFPA 70)- national electrical code

Biamp Systems (AV company)
• Zack Steinberg
• EE
• Beaverton
• started in music industry, moved towards commercial applications
• 200-300 people in office, engineering was about 75
• Current sensing research/implementation
 ○ researched different methods of current sensing
 ○ considered alternative components for replacement of methods currently used in Biamp products
 ○ met with suppliers and vendors to discuss pros/cons of different sensors
 ○ retrofitted existing products with new sensors and tested accuracy and THD+N of different methods
 ○ documented results with schematic changes for alternate components
 ○ useful for cost saving on products in development
• RJ45 to 4 pin Phoenix adapter
 ○ small adapter board for internal testing
 ○ provided stable alternative to handmade cables
 ○ also served as good introduction to using altium designer for schematic and PCB layout design, and releasing CAD files for fabrication and assembly.
• Switching resistive load
 ○ used for amplifier testing
 ○ high wattage resistors connected with relays for configurable channels
 ○ user controls resistor configurations per channel by button input
• Pink noise generator
 ○ internal testing
 ○ used as alternative to digital noise generator in product testing
 ○ different configuration options, modified gain and output stages for given schematic
 ○ pink noise is linear; white noise is flat.
• Departments:
 ○ hardware engineering- design tips, schematic and layout help, ordering parts/PCBs for projects, mechanical help
 ○ DSP team- advice on current sensing testing with accuracies needed, thing to look for in sensors

Daimler
• Thomas Prihoda
• first internship
• CPE
• advanced engineering department
• 3-4K people
• Portland, Oregon
• Hybrid system of daimler's supertruck II project
 ○ worked with ECUs
 ○ fair amount of cabling work
 ○ almost exclusively in or under a truck
 ○ Programming AC system for superTruck
 ▪ controls for compressor RPM to manage evaporator temperature
 ▪ controls for 48V condenser fans to manage high-side pressure
 ▪ porting legacy targets to new system
• tuning PID controllers to maximize response

Challenges:
• many variables impact charging voltage
• Simple PID was too slow to respond to RPM changes
• Created new PID control system

Genentech- cancer medications
• Hillsboro: 300 people
• Justin Tran
• EE
• 1st internship
• packaging line camera job
 ○ problem: old camera job was unintuitive to use, missing features, and was falsely ejecting product when it was placed in a certain position
 ○ solution:
 ▪ new tool used to detect vial not affect by the issue the old job had
 ▪ implemented flip cap detention
 ▪ created new camera job from scratch
 • semi-automated tuning
 • more data stored for future tuning
• automation lab test camera setup
 ○ problem: current documentation system for the automation team was not meant to be used for that purpose. Because of this, there are many extra steps that take up a lot of time.
 ○ solution:
 ▪ communication with different departments
 • working with IT to find a system for our situation
• documentation system change
 ○ problem: lab test camera could only be triggered from a laptop and did not properly activate the lights
 ○ solution:
 ▪ wrote PLC/HMI program to control camera
 • 4 different output to the camera
 • can set to continuously trigger
 • can alter trigger frequency and duration

Layard- Planar systems
• Lyubo Gankov
• First internships
• ECE
• small, quiet office
• Upgraded IR test fixture
 ○ Made sensor PCBs (either have phototransistor or IR LED)
 ▪ make breakout board PCB (connects to sensors /controller)
 ▪ Used autodesk eagle
 ○ All parts used are off-the-shelf for ease of repair
• Magnetic Polarity sensor prototype
 ○ Validates whether magnets are installed correctly (1N, 1S facing up)
 ○ Using hall effect sensors + microcontroller (programmed in C)
• Breakout PCB design & power meter assembly
- Designed a PCB for DC box- built 6
 - converts from connector to screw terminal
 - measures how much power is used from a wall outlet
 - contains relays to cycle power to output
- AC box- built 2
- Power meter calibration fixture
 - found an electronic load with AC/DC functionality
 - used as a comparison for power box measurements
 - E-load draws known amount of power
- Reflection/takeaways:
 - Calibration procedures and requirements
 - Designing for manufacturability, usability, design experience
 - Organization, prioritization of work
 - Importance of communication and documentation

Fortis construction (at Facebook datacenter)
- 1st internship
- Leonora Huynh-Watkins
- near Bend
- 500 employees
- Day to day responsibilities:
 - submittals
 - RFIs
 - requests for information
 - meetings
 - BIM issue resolution
- Weekly responsibilities
 - OAEC Reports
 - Executive summaries
 - Subcontractor RFI Audit
- Longer Term project:
 - Fire Alarm Commissioning
 - Generator Coordination
 - Bonding
 - Housing
 - Short circuit coordination study
- Takeaways:
 - what a "real job" is like
 - being part of a team
 - general contractor function
 - how to run a meeting
 - management/leadership skills

Keysight
- Brogan Miner
 - EE
- First internship
- Beaverton
- 50 people at the office
• QA for Wi-Fi testing devices
• Lab equipment layout and installation
• Internal tools development

Garmin
• Matt Guo
 o EE
• Salem
• LED test controller
 o Mass production of upcoming product to occur very soon, need a way to test the LED backlight.
 o Currently, production tests the LED backlight after the whole unit is assembled
 o test controller mimics PWM drive signals from a board in the unit to test the LEDs before installation
 o Needed to protect microcontroller from power surges
• Power sequencing:
 o LCD on an upcoming product requires very specific voltage timing requirements to ensure longevity of the display
 o voltage rails must be powered on after Vcc to protect the LCD from DC voltage
• Proximity sensor PoC
 o proximity sensor for tracking small objects inside airplane cockpit
 o varying sensing circumstances: altitude, temp, etc
 o sensor must not emit IR
 o ultrasonic tech used to measure time of flight
• Takeaways:
 o schematic design:
 ▪ electrical isolation
 ▪ PWM drive
 ▪ digital logic
 ▪ power sequencing
 o PCB layout
 ▪ DC-DC converters
 ▪ critical component placements
 ▪ routine techniques
 ▪ minimizing current loops
 ▪ ideal vs. real components

Daimler
• Jai Yi Li
 o EE/CS
• Swan Island, Portland
 o near University of Portland
• Traffic sign recognition:
 o optical character recognition
 ▪ Goal: utilizing machine learning object detection to detect speed signs and optical character recognition to autonomously read and understand speed signs.
 ▪ Object detection algorithms: YOLO and semantic segmentation
 ▪ Image processing:
• brightening
 • normalizing
 • resizing
 ○ Convolution neural networks
 ▪ first half is same as optical character recognition

• DTC/signals popup datamining
 ○ develop a custom script to query signals from database to determine the amount and types of popups that are shown to truck driver over a period of time

• Testing Workshop in Madras, OR
 ○ feature testing with feature owners

• Department Hackathon
 ○ develop custom script for datamining and data visualization on internal website

• Takeaways:
 ○ don’t be afraid to ask
 ○ communication is key
 ○ enjoy your internship and build connections

Triaxis (David Evans)
• Ryan McCullough
 ○ 2nd internship
 ○ energy business unit intern

• Corvallis and Portland

• Services:
 ○ energy
 ▪ substation design
 ▪ transmission design
 ○ water and environment
 ○ surveying and geomatics
 ○ transportation
 ▪ bridge and structures
 ▪ roads and highways
 ▪ transit and railroad
 ▪ construction engineering
 ○ marine services

• Canby Utility Systems case study
 ○ simulating canby’s grid in easyPower software
 ○ Coordinating time current curves
 ○ short circuit analysis
 ▪ EasyPower software can quickly simulate single line-to-ground faults, line-to-line faults, double line-to-ground faults, and three-phase faults
 ○ contingency analysis
 ○ correlations between weather and peak load
 ▪ higher demand in winter because of heating
 ○ demand forecasting

• Learned:
 ○ power flow simulations
 ○ fault simulations
 ○ coordinating relays with fuses and damage curves
- communication
- organization
 - multiple tasks at once

Tektronix
- Huy Nguyen
 - second internship
- Portland
- 5000 people on campus
- Jitter Project
 - Design a jitter modulation module that is compact and affordable. It also will be easier to use and reduces overall testing time in comparison to current methods
 - jitter is timing errors which occur in data transfer due to various sources of noise.
 - Current setup was complicated, expensive, slow, and bulky
 - Solution was compact, affordable, faster and full automation capability
 - few thousand dollars instead of quarter million
- Lessons:
 - deeper understanding on how instruments work
 - gaining knowledge about high-speed RF signal and apply to circuit/PCB design
 - Programing language: Matlab and Python
 - Industrial design tools: Allegro Cadence
 - used to design circuit boards
 - Teamwork
 - project assigned to a team of interns, not traditional (one-on-one) mentor model

Eaton:
- Benjamin Kawasaki
 - second internship
- Tualatin (~100 people)
- Power focus area (course load and work at Eaton)
- buck converter (steps voltage down)
 - steps current up while voltage is stepped down
 - upgraded 10A design to 30A design
- 10A buck converter (testing)
 - also converts 24V to 12V
 - conducted testing on prototype board
 - troubleshooting
- Takeaways:
 - presenting designs for review
 - best practices for power conversion components, control schemes, and protection
 - balancing design choices based on functional trade-offs, safety, space, and cost
 - Altium designer:
 - schematic/PCB editor with 3D modeling capability
 - commonly used in industry

Intel
- Matt Boe
 - second internship
• CE
• 1000 people on campus (or more)
• SFP and QSFP Interceptor
 • finished design of SFP interceptor and designed QSFP
 • SFP and QSFP:
 ▪ hot pluggable network modules
 ▪ from 1GB/s to 200 Gb/s with QSFP
 ▪ small form-factor pluggable transceiver + quad SPF
 ▪ SFF-8472
 • Board designed to intercept sideband signals and module EEPROM
 ▪ intercepts and modifies I2C and other low speed signals between host and module
 ▪ can make the system think another module has been presented or that the module
 has changed state, testing how hosts handle presented information
 ▪ allows for test automation in a physical environment
 • Completing SFP Interceptor
 ▪ update GUI
 ▪ Update bootloader HW
 ▪ Firmware bugs
 • Generating QSFP Interceptor
 ▪ Port SFP Interceptor
 ▪ Incorporate what was learned from SFP
 ▪ Design schematic and update FW and GUI
• Power sequencer evaluation
 • evaluated device to sequence power on and off and test
• OCP NIC 3.0
 • Open Compute Project Network Interface Card
 • Created functional block diagram as a reference for future designers
 • Open compute project
 ▪ several member companies including Intel
 ▪ Started by Facebook to create a standard for network cards
 • Network Interface Card 2.0
 ▪ Large and small form factors
• Learned:
 • designing a GUI with Qt for Python
 • I2C protocols and timing
 • Cadence design tools
 • Document what you are doing and what you have completed
 • Communicate regularly with mentor, manager, other interested parties
 • reach out to others. Look for new things to do, new things to learn, new people to meet.

Schneider Electric
• Roberto Bech
 • EE
 • second internship
• Energy management/efficiency
• Worked in Tualatin
 • 200 employees on-site
• Flash file transfer
C# terminal interface
 - Simple interface
 - Port selection prompt
 - Ability to use on most projects

Serial flash memory chip
- UART
- File Transfer
- Document firmware commands, and function workflow

RTOS:
- Validation and verification requires known values
- Suspend updates
 - Force known values
- BACnet Sensor updates
 - Does not interrupt RTOS routines and tasks
 - Provides realistic operation
 - Validation engineer reads values through terminal, BACnet, and also the unit display.

EcoStruxure Building operation
- Workstation connects to controllers that connect to room units
- Display readings, alarms (issues), graphs
- Room units reads:
 - CO2, occupancy, temp, humidity

Driver Development
- CO2 driver, room humidity, and temp
- Portability: program in layers
- Application:
 - Display sensor readings
 - RTOS calls read sensor

Cyber Security:
- Secure coding practices
 - Never use unsafe functions
 - Ex: atoi doesn't handle unterminated strings safely, use sscanf instead.
- Input validation
- Whitelist validation
 - Allows known good input and rejects everything else

Portland General Electric
- Zack Bendt
 - First internship
- Tualatin office
 - About 200 in office; 3,000 in company
- West Side Hydro Controls Upgrade
 - Made up of many smaller projects
 - Project was owned by another department
 - Required coordination with many other departments
 - Designed upgrades to communications equipment
 - Rack elevations
 - Cable tray layouts
 - Chassis wiring diagrams
• AcrFM- Fiber Manager
 ○ New software Telecom is using to document fiber optic cable
 ○ Entered fiber routes into GIS database and submitted to GIS department for posting
 ○ Held weekly meetings to develop standards and review processes for entering information into the database
 ○ Created documentation for process for entering conduit systems

• Several Small Projects
 ○ Faraday New Warehouse/Machine Shop corporate LAN

• Departments I interacted with:
 ○ Materials coordination
 ○ communication technicians
 ○ storeroom
 ○ geographical information systems (GIS)
 ○ physical security
 ○ drafting/engineering contractor

• Learned:
 ○ fiber optics
 ○ MPLS
 ○ SONET/TDM
 ○ AcrMap GIS software
 ○ Microwave and Radio
 ○ Power Generation

Cognex
• Colin Bond
 ○ 2nd internship
 ○ CPE
• 300 people in company
• Portland office of about 75 people
• License Validation
 ○ confirm all needed licenses are present
 ○ parse JSON string for license information
 ○ Compare what is present with desired
 ○ Confirms unit is configured correctly
• Synthetic image verification bugfix
 ○ bad pixel correction would corrupt synthetic image
 ▪ determine which pixel is wrong
 ▪ average surrounding pixels
• File Synchronization
 ○ loss of data after reboot
 ○ flush buffers
• Image Acquisition Stress test
 ○ test individual parameters
 ○ test the test
 ○ stress test runs overnight
 ▪ attempt running multiple threads
• Reboot functionality
• encrypting files
• hostname fix
• disable ports and services
• Learned:
 o source control - Git
 o Working with large code repositories
 o communication skills
 o scrum
 o PyBinds
 ▪ Python code to talk to C++ code
 o Refined coding skills

Concept Systems
• Art Yakimov
 o EE
 o 2nd internship
• Automate things (manufacturing automation, packaging, etc.)
• very small company (about 100 people)
• Albany office
• Projects:
 o PLC Programming
 ▪ Ladder logic
 • Use ladder logic per customer’s request.
 • Allows technicians to troubleshoot
 ▪ Use ladder logic to control robots, devices, and sensors to automate a process
 o HMI programming
 o Testing panels and I/O devices in house
 o Customer site integration
 o Project Management
 o Creating and updating project documentation
• Example system structure:
 o Operation interface (HMI)
 o Logic (PLC)
 o Drives (Control VDFs, Servo Motors, etc)
 o Safety (Relays, circuit breakers, E-stop)
 o Sensors & switches (Photoeye, limit switches)
 o Connectivity
 o Power supply