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A CONTINUOUSTIME FREQUENCY TRANSLATING DELTA SIGMA

MODULATOR

1. INTRODUCTION
1.1 Analog-to-Digital Conversion

Anaog-to-digital converters are important building blocks of many
electronic systems. The signals from the real world are continuously varying
analog signals. The general trend in communication system design is to
convert the input analog signalsin to digital 1's and 0's and do the subsequent
signal processing in digital domain. Signal processing in the digital domain is
robust, programmable and suited for integration.

Delta Sigma modulators [16] are an important class of analog-to-digital
converters. Switched capacitor based lowpass delta sigma modulators have
been developed for digitizing analog signals in the voice band with high
resolution. Bandpass delta sigma modulators have been developed for the
analog-to-digital conversion of IF signals[1], [2], [3], [4], [5], [6]. Delta Sigma
modulators are more suited for medium speed, high resolution applications.
This trangdlates to bandwidth of the order of hundreds of kHz and 12-20 bits of
resolution. The real advantage of delta sigma modulators is that high precision

analog components are not required for achieving good performance.

1.2 Contributions

As mentioned earlier, it is desirable to do analog-to-digital conversion
as early as possible in communication systems like radio receivers. This could
eventually lead to the development of single chip, multi-standard radio
receivers. An ideal digital radio will consist of a super analog-to-digital

converter, which will digitize RF signal at frequencies of the order of GHz
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with good dynamic range. Unfortunately, the design of such an A/D converter
in CMOS process will be aHerculean task. Even the design of A/D converter
for digitizing IF signal at hundreds of MHz, with good resolution is
challenging as the designer has to contend with a number of problems.

Bandpass delta sigma modulators have the potential for digitizing IF
signals at hundreds of MHz [2], [4], [5]. But this requires the design of
accurately tuned, high Q bandpass resonators. The resonators should have
good linearity and noise performance. Moreover the jitter in the clock, which
synchronizes DAC feedback, pulses [7], [10], [11], [12], [13] can limit the
maximum achievable SNR.

This thesis presents a new architecture for digitizing IF signals at
hundreds of MHz. The new architecture makes use of frequency trandation
inside the delta sigma loop [5]. The requirement of the bandpass resonator is
much relaxed in the frequency tranglating delta sigma modulator. A simple
design methodology is developed for the system level design of the frequency
translating modulator. A prototype frequency translating delta sigma modul ator
is designed in 0.35um CMOS process. Methods of simulating continuous time
delta sigma modulators to include finite opamp gain, bandwidth, DAC jitter,
are presented. Methods to reduce sensitivity of delta sigma modulator to DAC
jitter are discussed.

1.3. ThesisOrganization

Chapter 2 gives an overview of delta sigma modulators. The basic principle of
operation of deltasigma modulator is described. Delta sigma modulator
implementation in discrete time and continuous time is discussed.

Chapter 3 presents the transformation of discrete time, delta sigma loop
transfer functions in to s-domain loop transfer functions for continuous time

delta sigma modulators [19]. Simulation of continuous time delta sigma
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modulators using state space techniques [15], [20] and impulse invariant
transformation are also discussed. The simulation of the effects of finite opamp
gain, bandwidth in continuous time delta sigma using impulse invariance is

presented.

Chapter 4 deas with the simulation and theoretical estimation of noise due to
clock jitter in discrete as well as continuous time delta sigma modulators [7],
[10], [11], [12], [13]. It is shown that the jitter senditivity in continuous time
delta sigma modulators is considerably less if we use multi-bit quantizer and
feedback DAC. Continuous time low pass delta sigma modul ators are shown to
be insensitive to time delay jitter in the DAC feedback pulse [11]. A modified
DAC feedback to reduce jitter sensitivity in single-bit, lowpass continuous-
time delta-sigma modulators is introduced.

Chapter 5 introduces the concept of frequency trandating delta sigma
modulators in continuous time. A simple design technique for the design of
loop transfer function of the frequency trandating delta sigma modulator is
introduced. It is shown that frequency trandating delta sigma modulator are
less sensitive to time delay jitter in DAC feedback pulse. The effect of phase
noise in the sinusoidal DA C feedback is simulated.

Chapter 6 discusses the transistor level design of a prototype frequency
trandating delta sigma modulator at 100 MHz IF and 200 kHz bandwidth. All
the important blocks in the system are characterized interms of intermodulation
and input referred noise. Transistor level simulations show that 80 dB SNR can
be achieved at 100 mW static power dissipation.

Chapter 7 provides the conclusionsfor the thesis



2. OVERVIEW OF DELTA-SIGMA MODULATORS

2.1. Quantization Noisein A/D Converters

Fs

G—level

A/ — y[n]
Converter

» VLSB

Figure 2.2 ADC transfer curve

Consider a 9 level analog-to-digital converter shown in Figure 2.1. The
input voltage range of the A/D converter is divided into 9 equal divisions, each
indexed by a digital code, Figure 2.2. The digital output of the A/D converter
depends on the voltage interval in which the sampled input signal falls . It is
evident from the input-output transfer curve, Figure 2.2, that, the same digital
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code is produced by a range of input voltages. Thus there is a loss of
information inherent in analog to digital conversion. The A/D converter output
consists of input signal and quantization error.

If the input signal is varying randomly, then the quantization error is a

random variable, uniformly distributed between Vs

and VL2"°B , where Vg

is the quantization step. This is called the additive white noise approximation
of quantization noise [16]. An input sine wave at a frequency of 100 kHz,
sampled at 400 kHz is digitized using a 9-level A/D converter shown in Figure
2.1. A dither signal one-twentieth of V, 4, is added to the input signal so that

the input signa is sufficiently randomized and the additive white noise
approximation of quantization noise holds good. The spectrum of the digitized
output is shown in Figure 2.3, consists of a single tone a 100 kHz,
corresponding to the input signa and a noise floor corresponding to the

guantization noise.

9-Level A/D Qutput Spectrum

—20
_4p

dB

-80

-100

-120

0 0.5 1 1.5 2 2.5 3 3.5 4
Frequency

Figure 2.3 9-Level ADC output spectrum
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The quantization noise introduced by the A/D converter is approximately white
noise, with uniform distribution. This is the additive white noise

approximation. The total quantization noise in frequency band from - f, to f,

isgiven by Eq 2.1, where f, isthe maximum input signal frequency.

Po=—""—, (2.1)

Where V, 4 is the quantization step and OSR is the oversampling ratio given

by Eq 2.2.

OSR=—=, (2.2)

Where Fs is the sampling frequency. The quantization noise power reduces by

3dB, for every doubling of oversampling ratio.

2.2. Delta-Sigma M odulators

x[n] Hi{z) ADC P v [n]

DAC

Figure 2.4 Genera discrete time delta sigma modul ator
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The generic delta sigma architecture is shown in Figure 2.4. A low
resolution A/D converter is embedded in a feedback loop consisting of a high
gain loop filter and alinear DAC. Usually single bit A/D converter and

q[n]

i@ b v [n]

x[n]

Figure 2.5 Linear Model of delta sigma modulator

DAC are used in deltasigma modulators, since they are inherently linear.
Assuming additive white noise approximation for quantization noise, the linear
model for delta sigma modulator is shown in Figure 2.5. u[n], q[n] and v[n] are
sampled input signal, quantization noise and digitized output signal of the delta
sigma modulator. The signal and noise transfer functions of the deltasigma

modulator are given by Eq 2.3 and Eq 2.4 respectively.

V@ _ Ho
X(z2) 1+H(2)

(2.3)

_V(o_ 1
Q2 1+H(2)

NTF (2.4)

The loop transfer function H (z) is designed such that the loop filter has

a high gain in the band of interest. Thus the signal transfer function is
approximately unity and the quantization noise is suppressed by the loop gain
of the feedback loop in the band of interest. Let us consider a discrete-time,

first order lowpass delta-sigma modulator. The loop filter, H(Z) is a delaying

integrator. The signal transfer function and noise transfer function of the
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discrete time first order lowpass delta sigma modulator is given by Eq. 2.6 and
Eq. 2.7 respectively. It is evident from Eq. 2.7 that the quantization noise is
highpass filtered and thus suppressed for low frequency signals.

_z"

H@Z)= s (2.5)

stF =Y _ 74 (2.6)
X(Z)

NTE = &) g7 (2.7)
Q(2)

2.3. Continuous Time and Discrete Time Delta Sigma M odulator s

I
HWS/H DD P v[n]

Figure 2.6 First order continuous time delta sigma modul ator

The input of the delta sigma modulator in section 2.2 is a sampled
signal and its loop transfer function is a discrete time z-domain transfer
function. We can design the loop transfer function in the ss<domain [15]. In this
case the front end sample and hold is moved inside the loop, infront of the
quantizer. The block diagram of the continuous time delta sigma modulator is
shown in Figure 2.6.

Continuous time delta sigma modulators have some advantages over

their discrete-time counter parts [5]. The front-end sample and hold in a
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discrete time delta sigma modulator should be as accurate as the delta sigma
modulator. In the case of a continuous time delta sigma modulator the
nonidealities of the S/H is suppressed since it is inside the delta sigma loop.
Continuous time delta sigma modulators can provide inherent antialias
filtering. For a given power dissipation, continuous time delta sigma
modulators can operate at a higher speed than its discrete time counterpart.
Thisis because the bandwidth requirement of the opamps in discrete time delta
sigma modulatorsis high due to the slewing and settling in each clock cycle.

2.4. Lowpassand Bandpass Delta-Sigma M odulator s

Delta sigma modulators can be used to digitize signals in the baseband.
In this case the loop filter will be a lowpass filter with high gain in the
frequency band around DC. The delta sigma modulator shown in Figure 2.6 is
afirst order lowpass continuous time delta sigma modulator. If the loop filter is
realized using bandpass resonators tuned to a center frequency, then the delta-
sigma modulator can digitize narrowband signals around the center frequency
[1], [2], [4], [5], [6]. The output spectrum of lowpass and bandpass delta sigma
modulators are shown in Figure 2.7 and Figure 2.8 respectively.



Lowpass DSM Output Spectrum

Frequency

Figure 2.7 Output Spectrum of Lowpass Delta sigma Modulator

Cutput Spectrum of Bandpass Delta—Sigma Modulator

2.2 24 26 2.8 3
Frequency

Figure 2.8 Output Spectrum of bandpass delta sigma modulator

10
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3. DESIGN AND SIMULATION OF CONTINUOUSTIME DELTA
SIGMA MODULATORS

3.1. Design of Loop Transfer Function of Continuous time Delta Sigma
Modulators

Fs

4
A w vt H(s) y(t)'l S/H }'[n];

Figure 3.1 Open loop block diagram

Let us break the continuous time delta sigma loop, in order to find the
loop gain. The delta-sigma open loop block diagram isgivenin Figure 3.1. The
DAC input in a delta-sigma modulator is updated once in every clock period.
Hence the DAC input is inherently discrete time in nature. The analog output
of the DAC is the input to the high gain loop filter. The loop filter output is
sampled every clock period, to derive the output signal ,v{n]. The input and
output of the open loop block are discrete time signals. Thus the loop transfer
function of a continuous-time delta sigma modulator is a discrete time z

domain transfer function [19].

NRZ DAC Pulse RZ DAC Pulse

IDAC

IDAC

0 T ’ 0 T2 T

Figure 3.2 Typical DAC feedback pulses
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3.1.1 Pulselnvariant Transformation

For a single bit deltasigma modulator the DAC output is usualy a
rectangular pulse. The polarity of the rectangular pulse depends on the
quantizer output. Typical DAC output pulses used in delta-sigma modul ator
are shown in Figure 3.2 [19]. The Laplace transform of the NRZ DAC pulseis
given by Eqg. 3.1, where T is the sampling time period. Thus in a single bit

delta-sigma modulator, the

1_ e—ST

S

Hoac(8) = (3.1
NRZ pulse response of the loop filter is sampled at the output to complete the
loop. Mathematically this can be written as

H(2) :Z{L'l{H(s)@} } (3.2
S t=nT

Where T is the sampling period, H(2z) is the equivalent discrete time transfer
function and H(s) is the actual continuous time loop transfer function. H(s)
is chosen such that the resulting H(z) is equal to standard discrete-time loop
transfer function, which is already known. The transformation of continuous
time loop transfer function to discrete time loop transfer function is called
pulse invariant transformation [19], since the impulse response of the
equivalent discrete time transfer function is equa to the sampled pulse
response o f the continuous time loop transfer function.



13

3.2.  Simulation of Continuous Time Delta Sigma M odulatorswith State
Space Techniques

Any linear, causal, lumped system can be described using a rationa s

Y

. The equivalent time domain
X(s)

domain transfer function of the form

description of the system isin the form of an n™ order differential equation. It
is convenient to break up the n™ order differential equation into n first order
differential equations to predict the time domain behaviour of the LTI system.
This system of first order differential equations is caled state space
formulation of the LTI system [20].

3.2.1 State Space Formulation of aSimple LTI System

Let us consider an LTI system whose s domain transfer function

isgiven by Eg. 3.3. The equivalent differential equation describing the time

Y(s) . 1

X() (s+1? (33)

: d{z(t) 2 dﬁt) +y(t) = x() (34)

domain behavior of the system is given by Eq. 3.4. Let us define a new
variable, y,(t), given by Eq. 3.5

() =2+ y0 (39

The second order differential equation given in Eq. 3.4 can be rewritten as
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dy, (t)

e yi(t) = x(t) (3.6)

Note that Eqs 3.5 and 3.6 are first order differential equations and can be
represented in the form of a matrix. This is an example of state space

formulation of asecond order LTI system.

{%Uiz[‘l 1}{“0}+[§%a) (3.7)
wn] L0 ~Lw®] 11

The general state space formulation of an LTI system are given by Egs. 3.8 and
3.9[20]. The state vector, X (t) of an LTI system represents the memory of the

system. Thus for a lowpass delta-sigma modulator, the state vector consists of
all the integrator outputs. For a bandpass delta-sigma, based on LC resonators,
the current through the inductor and the voltage across the capacitor in the LC

tank circuit determines the state vector.

X(t) = AX (1) + BX,, 1), (38)
Y(t) = CX (t) + DX, (), (3.9

Where X (t), X,,(t),Y(t) are state vector, input vector and output vector

respectively.
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3.2.2 State Space Formulation of Delta Sigma Modulator

Let us formulate the state space equation of a second order lowpass
continuous time delta sigma modulator [15]. The block diagram of the delta
sigma modulator is given in Figure 3.3. If we know the input signal, x, (t),
integrator outputs, x,(t) and x,(t) at time t =t , then all the other signals in
the system, including the quantizer output, Vn] and the DAC output, v(t) are

known. The state space formulation of the delta sigma modulator are given by
Egs 3.10, 3.11, 3.12 and 3.13. It is assumed that the integrator time constant, T

isequal to the time period of the sampling clock

Fs

0 x,(0) L
xin() —D \S‘ VN \r - D v[n]
-1 I.VST
9 ¢ bAC
e |

Figure 3.3 Second Order Continous time lowpass delts sigma modul ator

. _ 1 _l
% ()= 2 %, (0 =TV (3.10)
K0 = T30 - V) (3.10)
X [_1 {0 0}[&0)} 1 {1 _1}[)%(0} (3.12)
Xz(t) T|1 O Xz(t) T/0O -15 V(t)

V[n] =sgn(x,(nT)) (3.13)
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3.2.3 Solving State Space Equationsof LTI Systems

There are several ways to describe an LTI system. For example the
frequency domain behaviour of an LTI system can be characterized as a
rational s domain transfer function. As we saw earlier, we can formulate
differential equations to predict the time domain response of LTI system to
input signals. The steady state response of LTI systems is characterized by its
impulse response. The time domain response of a causal, LTI system with

impulse response, h(t), to aninput signa x(t) isgiven by Eq. 3.8.

y(t) = jh(t -7)x(r)dr (3.19)

However the general time domain response aso depends on the initial state of
the system. The general time domain response of a causal, LTI system is given
by Eq. 3.15

y() = z(t) + s(t), (3.15)

Where z(t) is the zero state response of the LTI system, determined by the
initial condition and s(t) is the steady state response of the LTI system. The

solution of the state space equations is aso given by the sum of zero state
response and steady state response. However the impulse response of an LTI
system with state space formulation is a matrix containing time domain
responses of the states to an impulse input. The time derivative of the state
vector is given by Eg. 3. 16. The matrix A in the state equation is called the
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transition matrix. The impulse response of the state vector is given by the
matrix exponential of the transition matrix of the system.

X (t) = AX(t) + BU (t) (3.16)
ho(t) =™ = | + At +2 (A + = (A)° + oo, (3.17)
2 3

Where h,(t) is the impulse response of the state vector. The general solution to

the state equation is given by
X () =X X(t,) + [ eIy (7)dr, (3.18)

Where X (t,) , represents the initial state of the system. The detailed derivation
of Eq. 3.18 [20] is beyond the scope of this thesis. However it is possible to
intuitively understand the significance of each term in the solution. The first

term, e*™)X(t,) solely depends on the initial condition and is the zero state

t
response of the system. The second term, Ie““”u(r)dris similar to the

t
steady state response of an LTI system given by Eqg. 3.14.

Let us try to further compare the solution of state space equations given
by Eg. 3.18 to the time domain behaviour of afirst order system, say a smple
RC lowpass filter. This makes sense because state space equations are
basically a set of first order differential equations. Let the initial charge in the

capacitor be v, .., - The impulse response of the RC lowpass filter is given by

Eqg. 3.19.

h(t) =ae™, (3.19)
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Where ais the RC time constant. The input is a unit step input, applied at time
t = 0. We know that step response is the integral of impulse response and also
the initial charge in the capacitor should exponentially decay to zero volts.
Therefore the time domain response of the RC lowpass filter is given by Eq.
3.20. Note the similarity of the general state space solution and the time
domain behavior of first order RC lowpass filter.

t
y(t) =€V, + j aedr (3.20)
0

3.24 Solutions of State Space Equations of Delta Sigma M odulator

The genera solution to the state equation can be used to compute the
integrator states in a lowpass delta-sigma modulator a t =nT . More often
than not, the computation of the matrix exponential is very difficult. However
in the case of second order lowpass delta ssigma modulator shown in Figure
3.3, it is possible to hand calculate the matrix exponential. The transition
matrix of the delta sigma modulator is given by Eq. 3.21. Inthiscase A" =0,
nisan integer. Thusthe matrix exponential is given by Eq. 3.22.

A=%[i 8} (3.21)
1 0] t[o 0O
eAt:|+At=L) J%L 0} (3.22)

n 1 0
et =t 1 (3.23)
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We only need to know the integrator outputs a t=nT, where T is the
sampling frequency. Therefore substituting t =nT and t, =(n-1T , we get
Eq. 3.24.

X[nT]=e* X[(n-DT] + aneAW") BU(r)dr (3.24)

(n-1)T

AT _ 1 O
e —[1 J (3.25)

The DAC output is a NRZ rectangular pulse modulated by the
guantizer output V[(n-1)T]. Thus, the integration of DAC pulse is easy.
Solving Eq. 3.24, we derive a set of difference equations, Eq. 3.26 [15], which
model the operation of continuous time delta sigma modulator. There are
absolutely no approximations involved and the state space equations also
model the antialias filtering of continuous time delta sigma modulator. The
output spectrum of the second order continuous time delta sigma modulator
based on state space equations is shown in Figure 3.4. The smulated SNR is
93.9 dB for a bandwidth of 400 kHz and sampling frequency of 100 MHz.

1 anu (t)dt

A T ], T o
Xo[nl] [T 1 X,[(n-D]] [-2 lT(nT—t)U(t)dt |

(n-)T



20

Cutspectrum from State Space Simulation
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Figure 3.4 Output Spectrum from state space simulation

3.3.  Simulation of Continuous Time Delta Sigma Modulator with
Impulse Invariance

State space simulation of delta sigma modulator is accurate and very
fast. However solving the state equations can be tedious and time consuming.
The solving state space equation can be extremely difficult if we try to include
nonidealities like finite opamp gain, finite opamp bandwidth, timing jitter in
DAC feedback pulse etc. Even solving state space equations for ideal bandpass
delta sigma modulators can be difficult.

3.3.1 Impulselnvariance Transformation

Let x(t), beaband limited signal. We know that if we sample x(t) at a

rate higher than the Nyquist rate, then there is no loss of information. The

continuous time signal x(t) can be reconstructed from the sampled signal
X[n]. Consider the system shown in Fig. 3.4. The signal x(t) isthe input to a

continuous time LTI system with impulse response h(t) . We are only
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interested in the output signal y(t) at time,t =nT . It the input is bandlimited,

the output is also bandlimited. It may be possible to move the sample and hold
at the output to the input as shown in Figure 3.5. The continuous time loop
filter is replaced by an equivalent discrete time filter, such that the output of
the discrete time filter y,[n] =y[nT]. It can be shown that the impulse
response of the equivalent discrete time loop filter is given by Eq. 3.22. Thisis

called the impulse invariant transformation.

h,[n] = h[nT] (3.27)

| [

x(t——N H(S) —\—by[n] x(t) N H, (@) —— ¥ [n]

Figure 3.5 Signal processing in continuous time and discrete time

In order to simulate continuous time delta sigma modulators with
impulse invariant transformation, we split the sampling time period in to
smaller time intervals. we replace the continuous-time loop transfer function
with its impulse invariant transformation [5] corresponding to the smaller time
interval. Thus simulation is done in discrete time and can be easly
implemented with standard matlab functions. The loop gain is determined by
the DAC pulse response of the loopfilter of delta-sigma modulator. The DAC
pulse response of the loopfilter of the delta-sigma modulator shown in Figure
3.3 is predicted from theory and impulse invariance transformation were found
to match very closely, as shown in Figure 3.6.
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3.3.2 Modeing of Nonidealitieswith Impulse Invariance

An important advantage is that the nonidealities like finite opamp gain,
finite opamp bandwidth, DAC feedback jitter, delay in the DAC feedback
etcetra can be easily modeled. The continuous-time loop transfer function with
finite opamp gain and bandwidth can be easily computed. These nonidealities
will be represented in the impulse invariant transfer function. DAC feedback
jitter is simulated by randomly varying the number of time steps in the

sampling clock period from one cycle to another.

Fulse Response of Lowpass Delta-Sigma

— Theoretical Prediction
+ Impulse Invariance

Figure 3.6 Pulse response of CTLPAZM
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Output Spectrum from Impulse Invariance
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Figure 3.7 Output Spectrum from simulation using impuse invariance

Output Spectrum with Finite Opamp Gain
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Figure 3.8 Effect of opamp gain on CTLPAZM performance

The effect of finite opamp gain on the operation of continuous time
delta sigma modulator is shown in Figure 3.8. Impulse invariance method was
used for smulation. The noise floor flattens in the baseband when the opamp
gainif small. The effect of finite opamp bandwidth is shown in Figure 3.9. The
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delta-sigma modulator was simulated assuming opamp unity gain bandwidth
of 1 MHz. The sampling frequency is 100 MHz. The opamp finite bandwidth
seems to introduce a high frequency pole in the noise transfer function.

Qutput Spectrum with Finite Opamp Bandwidth
20 .

Ty] £

—80

dB

—100

—120

Frequency

Figure 3.9 CTLPAZM output specturm with finite opamp bandwidth
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4, JITTER PERFORMANCE OF DELTA SSIGMA MODULATOR
4.1. Jitter Performance of Discrete Time Delta Sigma Modulators

In discrete time delta sigma modulators, the input signal is a discrete
time sampled signal. Therefore afront end S/H circuit is required in a discrete
time delta sigma modulator. The error due to the jitter in the clock
synchronizing the S/H appears directly as noise in the input signal, limiting the
maximum achievable SNR. The voltage error due to uncertainty in the
sampling instant is given by Eq 4.1.

gn] = Asin[a(nT + &[n])] - Asin[anT], (4.2)

gn] = Aawdt[n] cos(anT), (4.2

Where €n] is the voltage error, &[n]is the uncertainty in the sampling time

instant. The signal power and noise power are given by Eq 4.3 and Eq 4.4
respectively.

Ps :7, (43)
2,2 .2
p =AW0a “;Ud , (4.4)

Where g} is the variance of the timing error. The signal to noise ratio, after

integrating the jitter noise in the band of interest is given by Eq 4.5 [7], [10].
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(4.5)

NR :1OIog( OR j

4t zo?
4.2. Jitter Performance of L owpass Delta Sigma M odulator

The DAC feedback in continuous time delta sigma modulator is usually
arectangular pulse of certain duration, whose polarity depends on the single bit
guantizer output. The DAC feedback pulse is shown in Figure. 4.1. The delay
of the DAC feedback pulse and the pulse width can vary randomly from one
clock cycle to another. This results in noise at the output spectrum of the delta
sigma modulator.

The DAC pulse is assumed to be NRZ pulse. Therefore there is only
pulse width jitter, no time delay jitter. A timing error is associated with each
clock edge. The voltage error due to DAC pulse width jitter and the maximum
signal amplitude are given by Eq 4.6 and Eq 4.7 respectively.

IDAC

-y

—» e

w™ T

Figure 4.1 DAC feedback pulse
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Figure 4.2 SNR vsjitter plot for CTLPAZM

I fb
en] = &ln] c (4.6)
| T
o (4.7)

Where |, isthe DAC feedback current, T is the sampling time period, C, is

the integrating capacitance. The maximum SNR isgiven by [7], [10]

NR,,, =10log Are =10log 1 (4.8)
o? 16 (ORI ? (b2 '

The simulated and theoretically predicted SNR is given in Figure. 4.2,
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4.3. Jitter Performance of Continuous Time Delta Sigma Modulator
with Multi Bit Quantizer

Fs

u(t) f  His) ADC »v[n]

v(t) @

Figure 4.3 General CTAZM

Let us caculate the jitter induced error at the output of a general
continuous-time delta-sigma modulator shown in Figure 4.3. The DAC output
can be expressed asin Eq. 4.9, in the absense of DAC jitter.

V(t) = kffv[k][u(t —KT) - u(t - (k +T)], (4.9)

Where u(t) is the unit step function. Assuming a DAC jitter of &[K], EQ. 4.9

can be rewritten as in Eq. 4.10. The DAC output given in Eq. 4.10 passes
through the loop filter and the loop filter output is given by Eq. 4.11.

V(t) = %[v[k] —V[k = 1] u(t - KT + &[K]), (4.10)

k=—00

Y(t) = %[v[k]—v[k—l]] h, (t = KT + &[K]), (4.12)
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Where h,(t)is the step response of the loop filter. Expanding Eq. 4.11 in

Taylor series we get the error induced by the DAC jitter. The error induced by
the DAC at the output of the deltasigma modulator is given by Eq. 4.12,
where h(t) is the impulse response of the loop filter [10].

Y(t) = %[v[k] ~vik =1[ h, (t = KT) + h(t - KT)&[k] (4.12)

YInT] = MK vk =11 b, (n=K)+ 3K -VIk - &[KIn(n -k (4.13)

error[n] = (Mn] -v{n —1]] (&X[n]) Oh[n] (4.14)

The sequence Vin] —vin—-1] is modulated by the timing error sequence,
A[n]. Thus high frequency quantization noise is modulated in to the band of

interest, there by severely degrading the SNR. One way to reduce sensitivity is
to reduce the power of the sequence, in] —vin-1].

Fower of win]—v[n-1]
0.2

XL S T T R S

power

| BTN DR Dyt T -

Y v S IR S

0 0.002 0.004 0.006 0.008 0.01
Fms Guantization MNaoise

Figure 4.4 Power pf v[n]-v[n-] vs quantiztion noise power
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This trandates to reducing the cycle to cycle voltage or current
transitions at the DAC output. In a multi-bit delta-sigma modulator with NRZ
DAC , the cycle to cycle voltage or current change at the DAC output is
smaller . Thus multi-bit continuous-time deltasigma modulators are less
sensitive to DAC jitter. The power of the sequence Vin] —v[n—1] is plotted as
a function of quantization noise power in Figure 4.4. The power of the
sequence V[n]—Vv[n-1] is directly proportional to the quantization noise
power. This means that jitter performance improves by 6dB with each bit in

the quantizer.

44. Time Delay Jitter Performance of Lowpass Delta Sigma
Modulators

Consider a first order lowpass delta sigma modulator with RZ DAC
feedback. As explained in section 4.2, the time delay and pulse width of the RZ

DAC pulse can vary randomly from one clock cycle to another. The

Integrator Output

/samp le here

T2 T t
RZ DAC Pulse

e

Figure 4.5 Open loop response to RZ DAC pulse with time delay jitter
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open loop response of the integrator to a single RZ DAC pulse is shown in
Figure 4. 5. The integrator output is a constant at the samplingtime T andisa
measure of the area under the DAC pulse. So if the RZ DAC pulse has only
time delay jitter associated with it, then the area under the RZ DAC pulseis a
constant. The open loop response of the first order continuous time lowpass
delta sigma modulator does not change with time delay jitter. Thus afirst order
lowpass continuous time delta sigma modulator is insensitive to time delay
jitter. This is true for any general, continuous time lowpass delta sigma
modulator [11]. The SNR vs time delay jitter plot of a second order lowpass
continuous time delta sigma modulator with RZ DAC feedback is shown in
Figure 4.6.

snrvs Jitter
100

o SR ST S I

SNR(dB)

72| e TR

70
0 10
Rmsdwtter (ps)

Figure 4.6 SNR vsjitter plot for time delay jitter
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45. DAC Feedback with Reduced Jitter Sensitivity

IDAC

-y

Figure 4.7 Modified DA C feedback pulse

As discussed in section 4.4, a continuous time delta sigma modulator is
less sensitive to time delay jitter associated with the DAC pulse. Thusif we use
an edge triggered monostable pulse generator, the jitter performance of
continuous time delta sigma modulators will be much better. Another
aternative isto reduce the amplitude of the DAC pulse before the second clock
edge occurs. Thisis achieved by charging a capacitor and discharging in to the

virtual ground of the integrator through aresistor.

SMER v Jitter

SNR (dB)

) NN S i

2| A e T

70

Rms Jitter (ps)

Figure 4.8 SNR vsjitter plot for CTLPAXM with modified DAC feedback
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45.1 Feedback Coefficents of CTLPAXM with Modified DAC Feedback

A second order continuous time lowpass delta sigma modulator was
simulated using the modified DAC feedback, Figure 4.7. The feedback
coefficients of the delta sigma modulator are calculated by equating the open
loop response to that of a standard continuous time lowpass delta sigma
modulator with NRZ DAC feedback, whose feedback coefficients are already
known. Consider the open loop block diagram, Figure 3.1, of a standard
continuous time lowpass delta sigma modul ator with NRZ DAC feedback. The
feedback coefficients are a, = -1, a, =—-1.5. Let us give a NRZ pulse as the
input to the open loop block. The integrator time constant is equal to the

period of the sampling clock, T. The output signals the output nodes of

integrators are given by Eq.
Lorer
X, (t) = Ay ts (4.15)
a, t>T
t? t
a-——ta,—, t=sT
X, (t) = fT aTi (4.16)
—+a,——, t>T
a1.|. 275

Let the feedback coefficients of the delta sigma modulator with modified DAC
feedback be a; and a, . It can be shown that the open loop response of the

deltasigmamodulator or x; (t) for t >T isgiven by Eq. 4.22.
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x;(t):bl(t__l_T)+b2, t<T (4.17)
_i AWl
bl—on 1-e*), (4.18)
_A A g ety & aT
= T @) (1-e )+on 1-e"), (4.19)

Where w, = R_lc . The RC time constant was set such that the, DAC feedback

waveform decays by 99.99% at the second clock edge. The open loop response
in delta sigma modulator with modified DAC feedback should be equal to the
open loop response of the delta sigma modulator with NRZ DAC feedback.

X (1) = %, (), t=T (4.20)

Thevaluesof a; and a, arefound out from Eq. 4.23.
a; =-5
a, =—6
Note that the values of a; and a, are much higher than a, and a,. This

means that to achieve the same dynamic range, the DAC feedback current is
much higher. Thus the power dissipation in the delta sigma modulator with
modified DAC feedback will be more. The SNR vsjitter plot for second order
lowpass delta-sigma modulator with the new DAC feedback is shown in Figure
4.8.
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5. FREQUENCY TRANSLATING DELTA SSIGMA MODULATOR
5.1. Frequency Trandation Inside Delta-Sigma L oop

Bandpass delta sigma modulators are well suited for the digitization of
narrowband signals digitized on a carrier signal. In a conventional bandpass
delta-sigma modulator, the input IF signal is amplified by a high gain loop
filter accurately tuned to the desired center frequency. The output of the
loopfilter is digitized and the digitized output is fedback to the loopfilter by a
single bit DAC [1], [2], [3], [4], [5], [6].

Lo 'fel
0.5 ® 45 é 1 1 1/Q [n]
o t—pp] 0 o, U1 W L I .Y L
( y s2+0)2 TIs 4 Is :F <
0
g az ag
DAC
-—|

______

. cos{apt) /sin@pt)
Figure 5.1 Frequency translating bandpass delta sigma modul ator

In a frequency trandating bandpass delta sigma, Figure 5.1, input IF
signa is amplified by a low gain wideband bandpass resonator [5]. The
amplified IF signal is down converted to baseband. The down converted signal
is digitized using a continuous time lowpass delta sigma modulator. The
digitized output is up converted and fedback to the bandpass resonator. Thus
most of the signal processing is done in the low frequency domain. The main
purpose of the bandpass filter is to reduce the design requirement of blocks

inside the delta sigmaloop.
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5.2. Motivation

It is desirable to do analog-to-digital conversion as early as possible in
communication systems like radio receivers. This could eventually lead to the
development of single chip, multi-standard radio receivers. Direct digitization
of RF signals is very difficult since it requires A/D converters to digitize
signals at frequencies of the order of GHz. However design of A/D converters

for direct digitization of IF signal is possible although it is very challenging.

5.2.1 Conventional Bandpass Delta Sigma M odulator s

Conventional bandpass delta sigma modulators for direct digitization of
IF signals of the order of hundreds of MHz are very difficult to design in
CMOS technology. The main reason is that bandpass delta sigma modulators
require precisely tuned, high Q, low noise and linear bandpass pass filter in the
loop filter. Conventional bandpass delta sigma modulators are aso very
sensitive to time delay and random jitter in the DA C feedback pulse.

5.2.2 Frequency Trandlating Architecture Reduces design Requirements
of Important Analog Blocks

A simple solution is to down convert the IF signal to baseband and
digitize using lowpass delta sigma modulators [8]. Let us consider the
conventional direct conversion receiver architecture, Figure 5.2. The low noise
amplifier amplifies the weak input signal prior to down conversion. This
effectively reduces the noise figure of the mixer by the power gain of the low
noise amplifier. However we cannot have a huge gain in the low noise

amplifier because alarge input signal in the mixer degrades the
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Figure 5.2 Direct conversion receiver

intermodulation performance. Thus there is a trade off here, which limits
achievable dynamic range.

The basic idea of frequency trandating delta sigma modulators is to
integrate the low noise amplifier and mixer in a big feedback loop, where the
low noise amplifier suppresses both the noise and intermodulation in the mixer
as well as other blocks in the loop. Simplified analysis and system level
simulation shows that a 15dB passband gain is enough to achieve good
performance. Bandpass filters with 15dB gain are low Q and wideband . Hence
do not require accurate tuning. Thus, the design requirements of bandpass

resonators are considerably reduced.

5.2.3 BandpassBasis Function

In conventional delta sigma modulators, the DAC feedback is derived
by switching a reference DC current, depending on the quantizer output. Thus,
the feedback signal or the basis function is DC. The DAC feedback isusually a
rectangular current pulse, the width of the pulse depends on the clock
synchronizing the DAC. Random variations in the DAC pulse width appear as

noise in the output spectrum of the delta sigma modulator.
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In a frequency trandating delta sigma modulator, the down converted
signal is digitized using a continuous time lowpass delta sigma modulator. The
digitized output of the lowpass delta sigma modulator has to be up converted
before feeding back to the bandpass filter. Since the digitized lowpass delta
sigma output is only two level, we can feedback sinusoid pulse, whose polarity
depends on the digitized lowpass delta sigma output. Thus the basis function,
in this case is bandpass.

In Chapter 4, we saw that lowpass continuous time delta sigma
modulators are insensitive to time delay jitter in DAC feedback pulse. It will
be shown in Section 5.6 that conventional bandpass delta sigma are sensitive to
time delay jitter. It will be shown that frequency translating delta sigma
modulator can be mapped to an equivalent lowpass delta sigma modulator.
Freguency trandating delta sigma modulators are also insensitive to time delay
jitter in the DAC feedback pulse. If we use edge triggered sinusoid pulses for
feedback, the DAC jitter performance of frequency trandating delta sigma
modulator will be better than that of conventional bandpass delta sigma

modulator.

5.3.  Analysisof Frequency Transating Delta Sigma M odulator

One of the most basic issues in the design of frequency translating delta
sigma modulators is that the feedback loop has blocks that are not time
invariant. The loop has a down conversion mixer in the forward path and an up
conversion mixer in the feedback path. It is well known that mixers are not
time invariant. It may seem that the stability of the loop cannot be ensured by
traditional method of calculating the poles of the loop transfer function and

confining them to the left half plane of ja axis.
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5.3.1 Linearity of Mixer

Fortunately for the system level designer, this problem solves by itself.
First of al an idea mixer is a linear system. Let LO(t) be the modulating

signal. Let the input to the mixer be sum of two signals, x,(t) and X,(t). Then

the output signal y(t) isgiven by Eq. 5.1

y(0) = (%, (1) + %, () LO() = x, (LO(E) + %, ()LO(Y) (5.1)

Thus, Eg. 5.1 shows that an ideal mixer isalinear system.

5.3.2 Response of Frequency Translating Block to a L owpass | nput

Although the loop has time variant systems, let us cut the loop to find
the loop gain since we don’'t have anything better to do at the moment. We find
that the quantizer output is modulated up by the mixer in the feedback path.
The resulting signa is amplified by the bandpass filter. The amplified high
frequency signal is down converted to the baseband by the

(t) () o
1 Tose. s | R %
X(t)—@—§ mog_ }rlfQ(t)

N

Figure 5.3 Cascade of up conversion mixer, bandpass filter, down conversion
mixer
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mixer in the forward path. The cascade of up conversion mixer, bandpass filter

and down conversion mixer are shown in Figure 5.3.

Let us assume that the input signal, x(t) is a bandlimited lowpass

signal, centered around the baseband. The local oscillator frequency is same as
the center frequency of the bandpass filter. The input of the bandpass filter is

given by Eq. 5.2

Y1 (1) = x(t)sin(a,t) (5.2)

since the bandpass filter is an LTI system, the output of the bandpass filter is

given by Eqg. 5.3, where h(t) is the impul se response of the bandpass filter.

Y, (t) = h(t) Oy, (t) = Th(T)X(t -1)sin(w, (t-7))dr (5.3
sin(w, (t — 7)) = sin(w,t) cos(w,T) — cos(w,t) sin(w,T) (5.4)

Substituting Eq. 5.4 in Eg. 5.3, we get

y2 (t) = pr (t)sn(wot) - I bp (t) COS(C!)Ot), ( 55)
(1) = T h(r) sin(e,7)x(t - 7)dr = [h(t) sin(a,t)] Ox(t) (5.6)
Qo (t) = Th(r) cos(aw,7)x(t - 7)d7 = [h(t) cos(a,t)] Ox(t) (5.7)

Thus, the output of the bandpass filter has an inphase component and a

guadrature component given by Egs. 5.6 and 5.7 respectively. The inphase and
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guadrature signals together determine the output of the bandpass filter. Hence
we need to multiply y, (t) , with an inphase LO signal, cos(w,t) and a
quadrature LO signal , sin(w,t) separately, to get the inphase and quadrature
signas.

Let us first focus on the demodulation of the quadrature component of
the output of the bandpass filter. The output of the bandpass filter, y,(t) is
demodulated to baseband by a square wave. The square wave is inphase with

sin(w,t) and also has the same frequency. Let us assume that all the high

frequency components resulting from the frequency trandation is filtered

away. Then the down converted quadrature output is given by Eq. 5.8.

Yo ®) =2 (0 cos(e,0] Ex() (58)

Thus, the cascade of the up conversion mixer, bandpass filter and the

down converstion mixer can be replaced with an equivalent filter of impulse

response, h, (t) :E[h(t)cos(a)ot)]. The impulse response of the bandpass
T

filter in the frequency trandlating delta sigma modulator shown in Figure 5.1 is

given by Eqg. 5.9.

h(t) = 0.5, cos(w,t)u(t), (5.9

Where u(t) isthe unit step function. Since we assumed that the input signal is

bandlimited, and the high frequency components resulting from demodulation

arefiltered away, the equivalent impulse response is given by Eq. 5.10.

he (1) = 7—27 [0.5w, cos(ew,t)u(t)] cos(w,t) = ;)—ﬂ u(t) (5.10)
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It is obvious that the equivalent impulse response given in EQ. 5.10 is

: o w, .
that of an integrator with time constant, 2—° Thus, as far as the quantizer
T

output in the frequency trandating delta sigma modulator is concerned, it is
Do
2ir

processed by an integrator, with time constant, . Note that in an actual

frequency tranglating delta sigma modulator, the high frequency components
resulting from the demodulation are filtered away by the lowpass continuous
time delta sigma modulator in the loop. Remember that continuous time delta

sigma modulators provide free anti aliasfiltering.

5.3.3 Timelnvariance of Frequency Transating Block

Let us delay the input signal by t =t . Then the input of the bandpass

filter isgiven by Eq. 5.11.

yl (t) = X(t _to)s.n(wot) ( 511)

The output of the bandpass filter, vy, (t) isgiven by Eq. 5.12.

y,(t) = ]Eh(r)x(t —-t, —7)sin(w, (t —7))dr (5.12)
Y, (1) =Q(t —t,)sin(w,t) — 1 (t —t,) cos(w,t), (5.13)
| (t -t,) = [h(t) sin(c,t)] Ox(t - t,) (5.14)

Q(t -t,) = [n(t) cos(a,t)] Ox(t - t,) (5.15)
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Thus, the final demodulated and lowpass filtered output is given by Eq. 5.16.
The final output is also time shifted by t=t . Thus the cascade of up

conversion mixer, bandpass filter, down conversion mixer isan LTI system.

Yo ® = Z[h(0) cos(e,d] CX( -t,) (5.16)

54. System Level Design

Although there are blocks in the delta sigmaloop, which are not time invariant,
the whole frequency trandlating delta sigma loop acts like an LTI system. The
loop feedback coefficents, a,, a,, a, should be determined such that the

delta-sigma modulator is stable. Let us cut the loop infront of the DAC and go
through the loop inorder to determine the loopgain. The NRZ single-bit DAC
feedback pulse is modulated up by a sinusoidal wave and is amplified by the
bandpass filter. The output of the bandpass filter is downconverted by the local
oscillator to the baseband. The transfer function of the bandpass filter is given
by Eg. 5.1.

_ 0.5w,s

H =—""0" 517
bpf 52 +CL)§ ( )

Where w,, is the center frequency of the bandpass delta-sigma modulator. The

transfer function evaluated at s= j(w, +Aw), ﬁ)_a <<lisgiven by

(o]

Hyy (JAw) = (5.18)

jA4Aw
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The upconverting mixer, bandpass filter, and the down converting mixer, in
Figure 5.3 together act as alowpass integrator. Since the downconverted signal
bandwidth is much smaller than the center frequency of the delta sigma, the
sampling frequency of the continuous time delta sigma modulator can be less
than the center frequency of the bandpass delta-sigma modulator. Let us
assume that the sampling frequency is equal to the center frequency of the
delta ssigma modulator. The output of the bandpass filter is mixed down by a
periodic square wave generated by the local oscillator. The mixer gainis given
by Eq. 5.3 [18]. The equivalent integrator transfer function is given by Eq. 5.4,

where T is the sampling frequency.
G o = 2 (5.19
T

H eqint (S) = ( 520)

XV pem J |y T LI_/_:I: vinl,
1 Ts 1 | Ts | 1

Figure 5.4 Equivalent third order CTLPAZM

Thus, the frequency translating delta sigma modulator can be translated
in to an equivalent third order continuous time lowpass delta sigma modul ator.
The equivaent lowpass delta-sigma modulator is shown in Figure 5.3. The
feedback coefficients for the equivalent lowpass delta sigma modulator are

a, =-0.05, a, =-0.2, a, =-0.6416. The same coefficients can be used for

the frequency trandlating delta-sigma modulator.
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NRZ Pulse Response

— response of frequency—translating block
——. response of equivalent integrator

: 3
Time o

Figure 5.5 Open loop pulse responses of frequency translating block and its
equivalent integrator

The response of the frequency trandating delta sigma modulator to a
modulated NRZ DAC pulse, of 10ns duration is shown in Figure 5.5. The NRZ
pulse response of the equivalent lowpass integrator is plotted in the same
figure for comparison. Note that a 4™ order lowpass Butter Worth filter was
used to remove the high frequency signals resulting from mixing down of the
output of the bandpass filter. This explains the delay between the two
responses. The simulated output spectrum of the continuous time frequency
trandating bandpass delta-sigma is shown in Figure 5.6. The ssmulated SNR
over 200 KHz bandwidth at an IF frequency of 100 MHz is 95dB.
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Qutput Spectrum

Frequency

Figure 5.6 Output spectrum of frequency translating modul ator

55. Jitter Performance of Frequency Trandating Deta Sigma
Modulator

It was shown in section 5.2 that continuous time frequency translating
delta sigma modulators can be mapped to an equivalent lowpass delta sigma
modulator. The open loop response of the frequency translating

IDAC

FainY b
T ~ 2T

Figure 5.7 Modulated RZ DAC pulse
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SMR vs Jitter
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Figure 5.8 SNR vstime delay jitter performance of BPAZM

SMR vs Jitter
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Figure 5.9 SNR vstime delay jitter performance of frequency translating
BPAZM

modulator to a modulated NRZ pulse is similar to the NRZ pulse response of
the equivalent lowpass continuous time modulator. It was shown in chapter 4
that continuous time lowpass delta-sigma modulators are insensitive to time
delay jitter in the DAC [11]. Frequency translating delta sigma modulators are
also insensitive to time delay jitter in DAC feedback pulse.
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Conventional bandpass delta sigma modulators are sensitive to time
delay jitter in the DAC feedback pulse. The SNR vs time delay jitter
performance of afirst order continuous time bandpass delta sigmais shown in
Figure 5.8. The center frequency of the modulator is 100 MHz and the
sampling frequency is 400 MHz.

The SNR vs time delay jitter plot for a RZ frequency trandating
bandpass delta-sigma is shown in Figure 5.9. The center frequency of the
modulator is 200 MHz and the sampling frequency is 100 MHz. It is evident
form Figure 5.9 that frequency trandating delta sigma modulator is insensitive
to time delay jitter in the DA C feedback pulse.

5.6. Effect of Phase Noise of the Feedback Sine Wave on the
Performance of Frequency Transating Delta Sigma M odulator

Freguency trandating bandpass delta sigma modul ators are sensitive to
the non-idealities of the modulating sinusoidal signal in the feedback path. The
phase noise in the sine wave is down converted in to the baseband. However it
does not modulate high frequency quantization noise in to the baseband. This
is because the phase noise is relatively large in the signal band, but the
guantization noise is very small in the signal band due to noise shaping.
Outside the signal band, the quantization noise dominates, however the phase
noise is small. Due to this reason, phase noise in the SDAC feedback pulse is
not amplified. The modulator output spectrum with DAC feedback signa
corrupted by a single tone is shown in Figure 5.10. The feedback sinusoid is
given by Eq. 5.21.

V(t) = a, SN(27F .t + 3SIN(27F, 1)), (5.21)

Where F. =100MHzand F, =1MHz.

one
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Figure 5.10 Output Spectrum with tonal phase noise in the feedback
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6. TRANSISTOR LEVEL DESIGN OF FREQUENCY
TRANSLATING DELTA SSGMA MODULATOR

6.1. Architecture

LO inphase LO inphase
", R
! I[n]
0.5, 1 1 T
§ +®, as as
aj| aj
% < DACLI.
N
cos{®gt
LO quadrature LO quadrature
F
[n]
éx My T /T_:I: Q,
Ts 4 Ts
az ag
Qe (DACIL
N
sin(® , t)

Figure 6.1 Complete delta sigma modulator

As discussed in the pervious chapter, the input IF signal is modulated
down to the baseband, inside the delta sigma loop, in a frequency trandating
delta sigma modulator. Any bandpass signal can be represented in terms of two

lowpass signals, given by Eq. 6.1. We need two

Xop (1) = | (1) cOS(@,t) + Q(t) SiN(a,t) (6.2)

lowpass signals, an inphase component and a quadrature component to
represent a bandpass signal. So we need an I-channel delta sigma modulator,
which digitize the inphase component and a Q-channel delta sigma, which

digitize the quadrature component of the input bandpass signal. The complete
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delta-sigma modulator architecture is shown in Figure 6.1. The local oscillator

signals and the sinusoid signals used for up conversion of quantizer output are

shown in Figure 6.2.

6.2.

LO quadrature |
@0 /W\/
LO_inphase J L

cos(coot) \/\/\/

Figure 6.2 Local oscillator and feedback signals

System Specifications

The design specifications are listed below.

100MHz input IF frequency

200K Hz signal bandwidth

SNDR should be better than 80dB

Thermal noise power should be 80dB below the input signal power
0.2 Vpp maximum input signal swing

3.3V power supply

TSMC 0.35pum CMOS process
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6.3. BandpassFilter

out+

Figure 6.3 Bandpass Resonator

The bandpass resonator is one of the most important blocks in the
system. The transistor level implementation of the resonator is shown in Figure
6.3. The resonator is realized as a transconductance stage driving an LC tank
tuned to 100 MHz. The transfer function realized by the badndpass resonator is
given by Eg. 6.2. The transconductance of the resonator, the inductance and
capacitance of the LC tank circuit are given by Egs. 6.3, 6.4, 6.5. Gm is the
transconductance, L is the inductance of the LC tank circuit, C is the

capacitance of the LC tank circuit. The inductor in the tank circuit is offchip.

0.5w,s
s*+ )’

H(s) = (6.2)
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1 2
—=w, 6.3
T (6.3)
M _ 050, (6.4)
C
Gm=——_ Q™ L =40nH, C = 63.66pF (6.5)
200

The bias current and the input transistor sizes are determined by the
required intermodulation performance. Assuming square law equation is valid
for the input transistors, we can write the Taylor series for the output current of
the transconductor with respect to the input voltage. The intermodulation
performance can be predicted from Taylor series expansion of the input output
characteristics.

Simulations showed that channel length modulation of the input
transistors degrade the intermodulation performance considerably and this is
not accounted for by the Taylor series expansion of input output
characteristics. The input transistors were cascoded to reduce the channel
length modulation of input transistors and this improved the intermodulation
performance considerably. The expression for intermodulation performance
and the values of various design parameters are given by Egs. 6.7, 6.8, 6.9. The

predicted intermodulation from Taylor series expansion is 90dB.

3,,2

M=3_ S (66)

8 G

|§.5ﬂ0.5 1+ m

1,8

w

Gm=——0* v =02Vpp, |, =5mA ﬁ:ﬂcox' (6.7)
200 " TR ! 2 '



LC,, =150

LMA w400

v 'l 05

(6.8)

Figures 6.4, 6.5, 6.6 show the AC transfer characteristics,

intermodulation performance and the input referred noise of the bandpass

resonator. The main design parameters of the bandpass resonator are
summarized in the table below.

Input
Center Passband Intermodula P Power
] ) referred o
Frequency gain -tion _ dissipation
noise
84dB @
100 MHz 15dB 0.2Vpp 46nv/+Hz 35mwW
input signal
Table 6.1 Design parameters of bandpass filter
op 83 dBZB(VF("/out+"))
o | A
i : /
= - //
= 2l .-r/ ]
. ,,,-f"'f BN
] T
_4@ L
1EM 1EEM 1G
freq ( Hz )

Figure 6.4 AC response of the bandpass resonator
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ppa v 9B28(mag(dft(({IT("/V3/PLUS") — IT{"/v4/PLUS™))

(19, 1M,—5dB) ] = (188.2M,—5dB)
—26.8 |
—46.8 1
o 868 1
-
808 1
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Figure 6.5 Intermodul ation performance
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Figure 6.6 Input referred noise of resonator

6.4. Buffer Design

The output filter is down converted to the baseband. The output
common mode voltage of the bandpass filter is Vdd . Moreover the bandpass

filter cannot drive the down conversion mixer. Hence we need a buffer stage
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which isolated the bandpass filter from the mixer. The buffer stage aso should
act asalevd shifter. A simple common drain amplifier, Figure 6.7 was used
as the buffer stage. The intemodulation and the noise performance of the buffer
stage are summarized in Table 6.2. Note that the buffer stage is inside the
frequency trandation loop. Therefore the intermodulation and noise
performance of the buffer will be suppressed by the passband gain of the
bandpass filter. Thus the closed loop intermodulation and noise performance
will be improved by 15dB. The intermodulation and the noise performance are
givenin Figure 6.8, Figure 6.9 respectively.

.
S nel

out+ {1—+ —{> out-

o—F—h
e

Figure 6.7 Buffer circuit

_ Input referred o
Intermodul ation _ Power dissipation
thermal noise
73dB @ 1vpp input
. 5nv/~Hz 6.6 mW
signal

Table 6.2 Design parameters of buffer stage
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Figure 6.9 Input referred noise of buffer

6.5. Mixer Design

The buffer connected to the output of the bandpass resonator, drives
two RC integrators, one for I-channel and the other for Q-channel. The RC
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integrator form part of the loop filter for the second order continuous time delta

sigma modulator within the frequency trandating loop. The down

LOi

-~

in+ o> { —> out-

in-o—r—3— — > out+

D—|EID_|—|II d

Figure 6.10 Down conversion mixer

conversion mixer, shown in Figure 6.10, is realized using two pairs of nmos
switches, connected between the resistors and the virtual ground of the RC
integrators [18]. The switches in the mixer are driven by the local oscillator,
which is a sguare wave, with same fundamental frequency as the center
frequency of the resonator. The mixer switches couple and cross couples the
current in the resistors, depending on the polarity of LO signal.

The conversion gain of the mixer is given by Eq. 6.9 [18]. As
mentioned earlier, the input resistors act as linear V/I converters. The mixer
switches couples and cross couples the current in the resistors, depending on
the polarity of LO signal. The mixer switches are not linear since the on
resistance of MOS transistors depends on the drain to source voltage, Vds.
Thusthe total resistance seen by the buffer stage driving the input resistors will
be nonlinear.

The nonlinear dependence of the switch on resistance on Vds is given

by Eqg. 6.10. Assume that LOis high and LO low, then Eq. 6.11 will give the
intermodulation performance [18]. The predicted intermodulation is 137dB. It

is much less than the simulated intermodulation of 87dB. The intermodul ation
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performance of the integrator with and with out mixer switches,
intermodulation performance of actual mixer are summarized in Table 6.3. The
intermodulation performance of the mixer corresponding to Table 6.3 are given
in Figures 6.11, 6.12, 6.13.

Major sources of therma noise in the mixer are the input resistors,
DAC feedback resistors and the opamp therma noise. The input referred
thermal noise spectral density of the mixer is given by Eg. 6.12. The calculated
value of input referred thermal noise is 20nV /+/Hz . However the simulated
thermal noise, 38nV /+/Hz isamost double of the calculated value,

Note that the mixer stage is inside the frequency trandation loop.
Therefore the intermodulation and noise performance of the mixer will be

suppressed by the passband gain of the bandpass filter. Thus the closed loop
intermodulation and noise performance will be improved by 15dB.

= 0.6366 (6.9)

r, = W (6.20)
Koy (Vgs -Vt —Vds)

3 2
M = 2| fon Vin (6.11)
32\ R, ) {vdd -Vt -Vcm,
r,, =62Q, R, =3kQ, v, =1Vpp (6.12)
Vdd =3.3 Vt =0.7V, Vem , =1.4V (6.13)
P, =8KTR + 8KTRpzc N Opamp Noise (6.14)

t a2 ta2
Gain Gaing,

mixer



R, =3kQ, Ry, =3kQ, Opamp Noise = 4.84nV /v Hz
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(6.15)

Intermodulation of

integrator with input

Intermodulation  of

integrator with input

Intermodulation of

_ resistors and mixer | mixer
resistors alone _
switches
116dB @1Vpp 87dB @ 1Vpp 70dB @ 1Vpp

Table 6.3 Simulation of intermodulation in mixer

Periedic XF Respanse

=1 harmonic="1"; /3 ; pxf mag(¥,/v)

c4pm Vi harmonic="—1"; A3 | pxf magl¥/V)
. 580m | /| N
—  S50m ¢
520m // \\
49@m E
Qi FM Q5.0 TEERM 185 116Gk
freq ( Hz )

Figure 6.11 Mixer passband gain
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Figure 6.12 Intermodul ation of integrator with only input resistors
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Figure 6.13 Intermodulation of intergrator with input resistors and nonlinear
mixer switches
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Figure 6.14 Mixer intermodulation Performance
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Figure 6.15 Input referred noise of mixer
6.6. Opamps

As discussed earlier, the down converted IF signal is digitized by a
second order, continuous time lowpass delta sigma modulator. The opamp of
the first integrator of the delta sigma is realized by a simple folded cascode
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opamp, shown in Figure 6.16. The second stage integrator, Figure 6.17 is
realized as a Gm C integrator to avoid resistive loading of the first integrator.
The design specification of the folded cascode opamp is given in the table
below.

Gain UGB Load Thermal noise
58dB 120 MHz 4pF 4.84nV /VHz

Table 6.4 Folded cascode opamp design specifications

T
e b b
| 22—,
> R (R S
L= S, G T
N
x ;Ml B : —h i

Figure 6.16 Folded cascode opamp
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Figure 6.21 AC response of the GmC integrator
6.7. Sinusoidal Feedback DAC

As discussed earlier the digital output of the continuous time delta
sigma modulator is upconverted and fedback to the bandpass resonator. The
sinusoidal feedback DAC, Figure 6.22, is similar to a Gilbert cell. The input
sinusoidal voltage is converted in to current by a V-l converter. The Gilbert
cell mixer will switch the polarity of the sinusoidal current depending on the
comparator output of the lowpass delta sigma. The feedback current is

determined by the feedback coefficient, a,, and the transconductance of the

V/I converter of the input bandpass filter.

| pac = @GM=1mA, (6.16)

a, =02, Gm= 2—309—1 (6.17)
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Figure 6.23 SDAC response to comparator

6.8. RDAC and CDAC

The down converted IF signal in a frequency trandating delta
sigma modulator is digitized using a continuous time second order
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lowpass delta sigma modulator. The DAC for the first stage integrator
of the lowpass delta sigma modulator is shown in Figure 6.24. It
realized by switching a pair of resistors to reference voltage, depending
on the quantizer output. The DAC for the second integrator is asimple
current switching DAC, shown in Figure 6.25.

The DAC feedack current for the RDAC depends on the
feedback coefficient, a, and the input resistor in the first stage RC
integrator. The RDAC feedback current is given by Eq. 6.18. The DAC
feedack current for the RDAC depends on the feedback coefficient, a,

and the transconductance of the first stage GmC integrator. The RDAC
feedback current is given by Eqg. 6.19.

| e =22 =100LA (6.18)
R,

a, =03, R, =3kQ (6.19)

| oone = 8,6M = 128A (6.20)

a, =0.6416, Gm = 20042 (6.21)
Y
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Figure 6.25 CDAC

6.9. Transistor Leval Simulation Result

The output spectrum from transistor level simulations for an
input signal 1 MHz offset from the center frequency is shown in Figure
6.26.



Figure 6.26 Output spectrum from transistor level Simulation
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7. CONCLUSIONS

The basic concept of frequency trandlating continuous time bandpass delta
sigma modulation is presented. Frequency trandating delta sigma modulators are well
suited for digitizing IF signalsin radio receivers. It is shown that frequency translating
delta sigma modulators can be mapped in to an equivalent, continuous time lowpass
delta sigma modul ator.

The performance of continuous time delta sigma modulators is investigated in
detail and it is shown that continuous time lowpass delta-sigma modulators are less
sensitive to time delay jitter in the DAC feedback pulse. The same property holds
good for frequency trandating delta sigma modulators. A modified DAC feedback
scheme to improve DAC jitter performance of continuous time lowpass delta sigma
modulators is proposed. A similar technique can be used to improve the jitter
performance of frequency trand ating delta sigma modul ators.

A simple design methodology for the system level design of frequency
trandating modulators is presented. A prototype frequency trandating delta sigma
modulator is implemented in 0.35um, CMOS process to prove the concept. All the
important blocks in the system are characterized interms of intermodulation
performance and input referred thermal noise. Transistor level ssimulations show that
80dB SNR can be achieved with 100mW of dtatic power dissipation.
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