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have provided valuable feedback and suggestions that has helped me many a time in my

research. Gowtham deserves a special mention for all the interesting discussions we have

had during our parallel graduate work over the past two years. I thank Vova for putting

up with me both in the lab and at home, as well as for being a great information resource.
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HIGH-SPEED CMOS DUAL-MODULUS PRESCALERS

FOR FREQUENCY SYNTHESIS

CHAPTER 1. INTRODUCTION

Frequency synthesizers are critical components for frequency translation and chan-

nel selection in wireless transceivers. Synthesizer design is a challenging task due to the

stringent requirements imposed by RF systems.

This chapter provides an overview of the concepts of PLL-based frequency synthe-

sis and the significance of variable-moduli prescalers.

1.1. Motivation

Oscillators and frequency synthesizers are key elements in a radio system that

provide a controlled frequency source for receive signal down conversion and transmit

signal up conversion. A stand-alone oscillator or a voltage controlled oscillator (VCO)

does not have the required frequency stability to satisfy the low phase noise requirement.

Therefore frequency synthesis is necessary to obtain accurate high frequencies from a

precise low frequency crystal oscillator. Phase locked loops (PLLs) are often used to

provide negative feedback in frequency synthesizers to suppress the phase noise due to

oscillators.

Figure 1.1 shows a generic PLL-based synthesizer. The reference divider ÷R can

be used to scale highly accurate crystal based input frequencies down to desired levels

for the PLL module. The PLL consists of a phase-frequency detector (PFD) and a

loop filter (LF) apart from the VCO. The operation of the PLL and the programmable

counter in the feedback path allow generation of accurate high frequencies from a pure



2

low frequency signal. The programmable P-counter is usually preceded by a prescaler

(÷N) that scales down the high output frequencies to a range at which standard CMOS

dividers can be implemented.

A dual-modulus division gives the flexibility to select channels on the basis of

the number of times each of the moduli is selected. The dual-modulus prescaler could

also be used in the feedback to obtain fractional output frequencies. Such synthesizer

architectures, called fractional-N frequency synthesizers, allow the reference frequencies

to be higher. PLL stability considerations require loop bandwidths to be a fraction of

the reference frequency. So fractional-N synthesizers allow for higher loop bandwidths,

resulting in faster output settling and lower oscillator noise characteristics.

÷
N


÷
R
 PFD
 LF

f
ref


VCO


Modulus Control


÷
N


f
ref


Modulus Control


P

counter


f
out

  N f
ref


R

=


FIGURE 1.1: A typical integer-N PLL frequency synthesizer.

In several RF systems, the synthesizer is commonly partitioned into three separate

chips: the VCO; the dual-modulus prescaler; and the channel selection logic(program

counters and swallow counters) along with the phase/frequency detectors. As the VCO

and the prescaler operate at a maximum frequency, they are usually fabricated in silicon

bipolar or GaAs technologies and the rest in CMOS technology. Although these tech-

nologies support faster transistors, they are not very cost-effective. With the growing

push towards integration of the entire synthesizer, research progress is being gradually

made towards obtaining comparable performance with CMOS processes.
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In order to tackle the multiple challenges presented by the requirements of wireless

systems, it is necessary to understand the PLL frequency synthesizer at the system-level

before analyzing and designing dual-modulus prescalers. These system level issues and

the transistor-level implementation of dual-modulus prescalers have been addressed in

this thesis.

1.2. Thesis Organization

To provide a system level understanding of PLL-based frequency synthesizers, it is

essential to discuss the features of commonly used structures. An overview of frequency

synthesizer architectures and their characteristics, as well as a brief review of phase-

locked loops are discussed in the Chapter 2. Chapter 3 deals with the details of the

pulse-swallow topology for dual-modulus division. In Chapter 4 the design considerations

and the actual implementation of the dual-modulus prescaler is discussed. The design

challenges presented by the input/output buffers that interface this circuit to the outside

world are also presented. Chapter 5 concludes the thesis with a compilation of the

obtained simulation and measurement results.
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CHAPTER 2. PLL-BASED FREQUENCY

SYNTHESIZERS

With the boom of the wireless communications market, wireless transceivers have

become ubiquitous. At the heart of every transceiver is a frequency synthesizer, required

for accurate channel-selection. This chapter is an introduction to the concept of PLL-

based frequency synthesis.

2.1. Introduction to Frequency Synthesizers

A transceiver (transmitter-receiver) is the building block that interfaces between

the end user and the transmission medium. The transceiver consists of three blocks [1]

- the user-end interfaces between the user information and the digital data representa-

tion; the back-end modulates and demodulates the digital data to and from the analog

baseband signal that is suited for the transmission technique used (QPSK, GMSK etc.);

and the front-end block that does the transmission, reception and frequency conversions.

Modern communication protocols always allocate closely located channels at very

high frequencies. For example [2], Bluetooth, a short range wireless protocol, allocates

79 channels from 2.402 GHz to 2.480 GHz resulting in a 1MHz channel spacing. The

phase noise from the LO needs to be low enough not to interfere with frequencies in

the adjacent channels. However, a stand-alone oscillator with sufficiently high-Q, will

not be tunable over a 79 MHz band. Additionally, even crystals do not have resonance

frequencies as high as 2.4 GHz.

The above discussion illustrates the need for a block that synthesizes many discrete

frequencies from one or more fixed reference frequencies. Figure 2.1 illustrates this in

the context of a generic transceiver.
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Duplexer

Filter


Band Pass

Filter


Band Pass

Filter


Frequency

Synthesizer


Channel

Selection by


digital control


Mixer


Mixer


LNA


Power Amplifier


FIGURE 2.1: Frequency synthesizer operation in a generic transceiver.

As many discrete frequencies need to be generated it is impractical to have a

reference frequency for each. Ideally, the reference frequency is a single spectrally pure

frequency, typically generated from a piezo-electric crystal. This leads to the idea of a

control input to generate required frequencies from a single reference.

Phase Locked Loops (PLLs) are negative feedback systems whose output fre-

quency can be digitally controlled with the help of a precise clock at its input as reference.

The reference phase noise is suppressed within the loop bandwidth by the negative feed-

back. High output frequencies can be obtained from accurate references by frequency

division in the feedback path. Therefore they are ideal devices for frequency synthesis.

Figure 2.2 shows a typical PLL-based implementation of frequency synthesizer. This is

also referred to as an integer-N synthesizer, discussed in detail in later sections.
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÷
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FIGURE 2.2: PLL-based frequency synthesizer.

2.2. Characterization of Frequency Synthesizers

Modern wireless standards impose several stringent requirements which challenge

the design of frequency synthesizers. This is exemplified by the Bluetooth protocol

mentioned in the previous section. Some of the important parameters that characterize

the performance of synthesizers are highlighted in this section.

2.2.1. Frequency Range

The range of frequencies generated by the synthesizer is defined by the wireless

standard (900 MHz, 1.9 GHz, 2.4 GHz etc.). In most cases, the frequency must be varied

in small increments determined by the channel spacing. This frequency resolution could

be as low as 30 kHz. A specification on the output frequency accuracy, as well as on

the channel’s upper and lower edges requires the error of the synthesizer to be less than

a few parts per million. The generated output frequencies could experience short term

(drift) or long term variations (aging) due to the environment. So a frequency stability

specification is usually defined with respect to time, temperature, power supply etc.
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2.2.2. Spectral Purity

The spectral purity of the synthesized output can deviate due to the nonidealities in

the components of the PLL. The ideal output spectrum of a frequency synthesizer should

be a single tone at the desired frequency in order to provide the reference frequency for

frequency translation. A single tone in the frequency domain is equivalent to a pure

sinusoidal waveform in the time domain. The random and systematic amplitude and

phase deviations from the desired values produce energy in frequencies other than the

desired frequency. When this energy is mixed with the received RF signal or modulated

baseband signal, undesired sidebands are created. Phase noise and spurious tones are the

two key parameters to measure the quality of a frequency synthesizer. In this section,

the effects of phase noise and spurious tones on a transceiver have been investigated.

Phase noise is the phenomenon of phase disturbance of oscillators and has been

modeled and described extensively in literature[3, 4, 5, 6]. The ideal synthesizer has a

pure sinusoidal waveform as given by Eq. (2.1).

v(t) = V0Cos(2πf0t) (2.1)

When amplitude and phase fluctuations are included, the waveform becomes

v(t) = [V0 + ε(t)]Cos[2πf0t + φ(t)] (2.2)

where ε(t) represents an amplitude fluctuation and φ(t) represents a phase fluctuation.

Because amplitude fluctuations can be removed or greatly reduced by a limiter, phase

modulation is a bigger concern in frequency synthesizer design. The phase fluctuations

could arise in three different ways: systematic variations, due to aging of the resonator

material; deterministic periodic variations due to unwanted phase or frequency modula-

tions in the PLL, and random variations due to noise sources such as thermal, shot or

flicker noise in the devices.

The phase noise of oscillators or synthesizers is measured as the ratio of the noise



8

power in a 1Hz bandwidth at a certain offset frequency from the carrier to the noise

power of the carrier.

φ(f) = 10 log
Pnoise

Pcarrier
(dBc/Hz) (2.3)

Although the loop components suffer from the above mentioned noise sources, the

two important contributors of phase noise in a PLL are the input reference noise and

the VCO noise. The PLL loop bandwidth is a design parameter that is determined on

the basis of the dominant noise source. A linear model of PLLs has been discussed in a

later section.

As shown in Figure 2.3, the sidebands caused by the phase modulation appears

as a phase noise skirt. Sometimes energy is concentrated at frequencies other than the

desired frequency, resulting in spurious tones appearing as spikes above the phase

noise skirt. These tones are usually artifacts of reference frequency feed-through due to

charge-pump nonidealities or due to any periodicity introduced by the modulus-selection

operation. Some standard strategies used to alleviate the problem of spurious tones are

to use larger loop filter capacitors, notch filters to suppress reference feed-through and

the use of delta-sigma modulators to shape the noise due to modulus-selection out of the

band of interest [7, 8].

2.2.3. Transient Response Requirements

As shown in the phase-locked architecture of Figure 2.2, the modulus variation by

control signal would result in a loop transient. Every time a different channel is selected,

the PLL needs to lock to the new frequency. The lock time of synthesizers is especially

a critical parameter in fast frequency-hopped spread-spectrum systems.

An interesting analysis to model the loop settling behavior of PLL architectures

has been carried out in [1]. The modulus change in the system can be modeled with
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FIGURE 2.3: Phase noise and spurious tones.

a simple feedback topology as illustrated in Figure 2.4. Suppose the divider modulus

(N) variation corresponds to a small step ε in the feedback factor, the closed-loop jitter

transfer function of this system is equal to

Y (s) =
H(s)

1 + (N + ε)H(s)
X(s)

≈
H(s)

1 + NH(s)
.

1

1 + ε/N
X(s)

≈
H(s)

1 + NH(s)
(1 −

ε

N
)X(s) (2.4)

where, H(s) is the phase-domain transfer function of the PLL. The above relation implies

that the modulus change is equivalent to multiplying the input by (1- ε/N). The output

frequency’s response can thus be estimated with conventional second-order transient

equations to a step input.

2.3. PLL System Description

Since the frequency synthesizers are based on the phase-locking principle, a typical

PLL system has been described in this section. PLLs are negative feedback systems that
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FIGURE 2.4: Modulus switching transient model

operate on excess phase of nominally periodic signals. Their function is to lock the

frequencies and phase of its two input signals with as small an error as possible.

2.3.1. Basic Operation of PLL

The simplest PLL, shown in Figure 2.5(a) consists of a phase detector (PD), low-

pass filter (LPF) and a voltage-controlled oscillator (VCO). The PD serves as an error

amplifier in the feedback loop, and tries to minimize the phase difference ∆Φ between

X(t) and Y(t). The loop is considered “locked” if ∆Φ is constant with time.

Phase

Detector


Low-

Pass

Filter


VCO

X(t)
 Y(t)


(a)


G

LPF


(s)
X(s)
 Y(s)
K
PD

K


vco


s


(b)


--


+


FIGURE 2.5: Phase-locked loop (a) block diagram,(b) linear model.

In the locked condition, the PD produces an output proportional to the phase

error between the input and output signals. The LPF averages out this error so that a

voltage error ∆V corresponding to the phase error is built up at the input of the VCO.

The output frequency is modulated to minimize the phase and frequency error.
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2.3.2. PLL Loop Dynamics

Although the PLL transient is a nonlinear process, a linear approximation can

be used to arrive at a phase-domain PLL model that gives intuitive insight into the

tradeoffs involved in the design. From the linear PLL model of Figure 2.5(b), the closed-

loop transfer function, also known as the jitter transfer function, is given by,

H(s) =
Φout(s)

Φin(s)

=
KPDKV COGLPF (s)

s + KPDKV COGLPF (s)
(2.5)

If GLPF (s) = 1
1+ s

ωLPF

,

H(s) =
KPDKV CO

s2

ωLPF
+ s + KPDKV CO

(2.6)

From the above equations, it can be shown[1, 3] that the finite phase error is

inversely proportional to the loop gain KPDKV CO. Further, the above simple phase

detector and low pass-filter combination does not give independent control of the loop-

bandwidth and damping factor. These limitations necessitate the use of charge-pump

PLLs (CPLLs). A typical CPLL schematic is shown in Figure 2.6.
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FIGURE 2.6: Charge-Pump Phase-Locked Loop
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This CPLL structure has been analyzed extensively in the literature [9, 10]. The

salient features of this PLL structure have been discussed below without digressing into

the mathematical details of the system.

The simple phase detector has been replaced by a phase-frequency detector (PFD).

The PFD is a circuit that can detect both phase and frequency difference between the

input and output signals. This ability is a consequence of realizing the PFD using

digital sequential logic that compares clock edges instead of continuous input-output

phase comparisons. In order to convert the phase error pulses into a control voltage,

charge-pumps are used to charge up/down the loop filter depending on the state of the

PFD control signals. By virtue of incorporating a charge-pump and loop filter to average

the phase error pulses, the CPLL has ideally infinite DC gain, making the phase error

negligibly small. The loop filter capacitance C1 and the VCO, each contribute one pole

at the origin in the jitter transfer function. The resistance is, therefore, introduced

to compensate for the net phase shift around the loop. This implementation of the

filter gives the additional advantage of independent control of the loop-bandwidth and

damping factor [1].

Most PLL-based synthesizers use this basic topology with several variations in the

design of the individual building blocks. The switching introduced by the digital blocks

and the charge pumps can affect the purity of frequency synthesizer outputs. This has

been discussed in later sections.

2.4. Frequency Synthesizer Architectures

Output frequencies of frequency synthesizers vary in discrete steps corresponding

to the channel spacing i.e. fout = fo + k ·fch where fo is the lower limit of frequency. It

was shown in Figure 2.1 that the ‘k’ is selected by digital control. The need for output

frequencies to be accurately locked to a particular channel mandates the use of a PLL.

Some popular architectures for frequency synthesis and their features are discussed here.
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2.4.1. Static-Moduli Frequency Synthesizers

The classic PLL frequency synthesizer (Figure 2.7(a)) comprises a reference oscil-

lator and two static modulus dividers so that,

fout

N
=

fref

R
⇒ fout =

N

R
· fref (2.7)

Thus, by varying the moduli, different output frequencies can be synthesized.

Output frequencies can be incremented in steps of fref/R , and this is the frequency at

which the PFD is updated. As mentioned earlier, this requires the PLL loop bandwidth

to be a fraction of this update rate. The lower bandwidth is a big disadvantage in terms

of the reference phase noise suppression and slower settling times.

f

ref
 f
ref
 ÷
R
 PFD
 LF
 VCO


N
÷


P
÷
f
out


f

out
÷
R
 PFD
 LF


N
÷


VCO


FIGURE 2.7: (a) Classical static modulus divider; (b) Modified static modulus divider

A modification made to the above architecture is to include a static divider fol-

lowing the PLL as shown in Figure 2.7(b), so that the output frequencies are given by

fout = N
R·P ·fref but the PLL update rate is fref/N , a factor of P improvement.

However, although this modification improves the PLL loop bandwidth constraint,

the operating frequency of the PLL and the ÷N need to be higher.
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2.4.2. Integer-N Frequency Synthesizers

The integer-N frequency synthesizer is probably the most widely used architecture.

The feedback divider now consists of a static divider as well as a dual-modulus prescaler

coupled with two counters. The two counters are referred to as the swallow-counter

and program counter. The swallow counter, or the channel-spacing counter, can be

programmed to enable channel selection. The prescaler divides by N+1 until the swallow

counter overflows after which the overflow bit will set the prescaler in divide-by-N mode

until the program counter overflows. Stated more explicitly, the program counter (also

known as the frame counter) determines the total number of VCO cycles required for the

above operation. The detailed operation and the math involved in an integer-N system

to realize channel selection on the basis of programmed counters has been discussed in

later chapters.

2.4.3. Fractional-N Synthesizers

As mentioned above, integer-N PLLs are restricted in reference frequencies by

the channel spacing. The principle of pulse-swallow or pulse-removal can be used to

implement fractional division ratios. Depicted in Figure 2.8, are two implementation

strategies for fractional-N synthesis. Figure 2.8(a) incorporates a pulse-remover which

blocks one VCO pulse upon assertion of the “remove” control. The average locked

frequency is hence,

fout = fref + 1/Tp (2.8)

where, Tp is the period with which the pulse-remove command is applied. Modern

implementations however are based on dithering between two moduli. If the prescaler

divides by N for A VCO pulses and by N+1 for B pulses, the average divide ratio would

be equal to
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FIGURE 2.8: Fractional-N synthesis based on (a) pulse removal, (b) dual-modulus
prescaler

Navg =
NA + (N + 1)B

A + B
= N +

B

A + B
(2.9)

faverage =
A + B

A
N + B

N+1

(2.10)

⇒ faverage = N · f (2.11)

where, N represents the integer potion of the division modulus and f represents the

fractional portion.

The obvious advantage of the above scheme is that the channel spacing need only be

a fraction of the reference frequency, allowing for higher PLL loop bandwidths. the criti-

cal drawback of fractional-N synthesis is that the periodicity introduced by the modulus-

select operation usually appears as sidebands or spurs. The conventional technique to

eliminate the spurs is by dithering the modulus. To avoid an increase of the noise floor,

delta-sigma techniques can be used to shape the noise out of band which can then be

filtered out. This randomization of the modulus control to suppress spurs has been

discussed in [1].
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CHAPTER 3. DUAL-MODULUS PRESCALERS

The applications of dual-mod prescalers has been highlighted earlier in the context

of integer-N and fractional-N synthesizers. An analysis and a discussion of their operation

are carried out in this chapter.

3.1. Dual-Modulus Operation

The complexity of the N counter in PLL frequency synthesizers has grown over the

years. In addition to a straightforward N counter, it has evolved to include a prescaler.

This structure, illustrated earlier in Figure 2.2, has developed as a solution to the prob-

lems inherent in using the basic divide-by-N structure to feed back to the phase detector

when very high-frequency outputs are required. For example, suppose a 900 MHz output

is required with 10 kHz channel spacing. A 10 MHz reference frequency might be used,

with the R-divider set at 1000. Then, the N-value in the feedback would need to be of

the order of 90000. This would need a 17-bit counter capable of dealing with an input

frequency of 900 MHz.

To handle this range, it makes sense to precede the programmable counter with

a fixed counter element (the prescaler), to bring the very high input frequency down

to a range at which standard CMOS will operate. However, using a standard prescaler

introduces other complications. The system resolution, or the effective channel spacing,

is now degraded by P, the modulus of the prescaler. This issue can be addressed by using

a dual-modulus prescaler (Figure 3.1). It has the advantages of the standard prescaler

but without any loss in system resolution. A dual-modulus prescaler is a counter whose

division ratio can be switched from one value to another by an external control signal.

By using the dual-modulus prescaler with an ‘S’ and ‘P’ counter one can still maintain
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an output resolution specified by the input to the PLL (F1).
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FIGURE 3.1: Pulse-swallow integer-N frequency synthesizer.

As long as the S counter has not timed out, the prescaler divides down by N +

1. So, both the S and P counters will count down by 1 every time the prescaler counts

(N + 1) VCO cycles. This means the S counter will time out after ((N + 1) S) VCO

cycles. At this point the prescaler is switched to divide-by-N mode. The P counter still

has (P - S) cycles to go before it times out. So after ((P - S) N) more cycles, the system

is now reset to the initial condition. Expressing the above discussion mathematically,

total number of VCO cycles for one dual-modulus division, is

M = (S × (N + 1) + (P − S) × N)

= (SN + S + PN − SN)

=⇒ M = (S + PN) (3.1)

Typically the S counter is called the swallow counter, and the P counter is the program

counter.

Consider the expression M = S + PN. To ensure a continuous integer spacing for

M, S must be in the range 0 to (N - 1). Then, every time P is incremented there is
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enough resolution to fill in all the integer values between PN and (P + 1)N. As was

already noted for the dual-modulus prescaler, P must be greater than or equal to S for

the dual modulus prescaler to work. From these we can say that the smallest division

ratio possible while being able to increment in discrete integer steps is:

MMIN = (Pmin · N) + Smin

= ((N − 1) · N) + 0

= (N2
− N) (3.2)

The highest value of M is given by

MMAX = (Pmax · N) + Smax (3.3)

In this case Smax and Pmax are simply determined by the size of the S and P

counters. The range from MMIN to MMAX defines the multiple moduli of division.

3.2. Pulse-Swallow Architecture

One important factor that has not been addressed yet is how the dual-modulus op-

eration can be implemented. The conventional implementation of any divider/prescaler

is using digital counters. The division factor that can be easily realized using such logic

is of the form 2N , i.e. the pattern in which the counter counts repeats every 2N cycles.

To implement 2N + 1, therefore, one extra state of the system needs to be inserted over

a single pulse duration in the repetitive pattern. This is referred to as a “pulse-swallow”

operation.

The principle of operation of the pulse-swallow architecture can be explained by

means of a simple divide-by-2/3 circuit (Figure 3.2). Figure 3.2(a) shows the simplest

divider, a ÷2 implemented with a D flip-flop (DFF2). Now if another DFF (DFF1) and

the combinational gate G are inserted in the feedback path of the divider(Figure 3.2(b)),
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FIGURE 3.2: 2/3 dual-modulus divider(a) divide-by-2 ;(b) divide-by-3 circuit ;(c) 2/3
dual-modulus divider.

then the system can be in three states : Q1 Q2 = 01, 10, 11. The Q1 Q2 = 00 is

obviously illegal as that implies the previous values of Q2 and G would have had to be

in the impossible states of ‘0’ and ‘1’, respectively. In order to control the mod-select

an extra gate is required, such as the OR gate in Figure 3.2(c). This simple 2/3 divider

works in divide-by-2 mode when Mod Select is ‘1’ and in divide-by-3 mode for Mod

Select ‘0’. The above discussion can be extended to higher division moduli 2N/2N+1

prescalers easily.

3.3. Technology Comparison - Bipolar Vs CMOS

The two most important performance parameters to be optimized in the design of

prescalers are speed and power. The biggest limiting factor in this optimization is the

technology. As mentioned earlier, the prescaler being one of the components working at

full speed, is often implemented with bipolar or SiGe/GaAs technologies [11, 12, 13, 14].
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One of the perennial questions that has been discussed often in several conference panel

discussions and by RF engineers is the wisdom in pursuing RF-CMOS. This section

compares bipolar and CMOS technology for RF applications, throwing light on some of

their merits and demerits.

The key transistor figures of merit for RF and microwave applications are the

unity-gain frequency fT and the maximum power gain frequency fmax, 1/f noise corner

frequency etc. A comparison of the figures of merits of several technologies suitable for

wireless LAN applications has been tabulated in [15]. As silicon technologies are less ex-

pensive and more integrable, they would be the clear choice. However, it is not obvious

as to which silicon technology ought to be used, bipolar/BiCMOS or CMOS. Some of

the issues considered are listed below.

Device Performance Comparison: Bipolar transistors do have a lot of performance

advantages over MOSFETs in RF and analog applications. Some of the important com-

parisons are:

• gm/I ratio of bipolar transistors is always higher than MOSFETs [16]. The NPN

transistor possess a higher inherent gain compared to NMOSFETs and hence, a higher

drive capability.

• Bipolar transistors have lower 1/f noise than MOSFETs due to the absence of

surface charge effects. This is a significant advantage for low-noise RF circuits.

• Bipolar transistors are sometimes considered to be modeled better than MOSFETs,

especially in the deep-submicron processes currently used [17].

• Bipolar devices exhibit better device matching on the same die.

• Bipolar transistors, however, are more non-linear than MOS devices due to their

exponential I-V characteristics. This is especially significant in the context of devices

that are used as switches. However distortion introduced due to back-gate effects are

absent in bipolar transistors.

• MOS devices have the advantage of the availability of complementary PMOS de-

vices.



21

For RF circuits, bipolar devices do seem to possess more desirable features. Several

commercial analog products, however, utilize the advantages of both the bipolar and

MOS characteristics in BiCMOS processes.

Availability and Accessibility: It has been well established that CMOS is the most

available and accessible process among all semiconductor technologies. Several foundries

around the world offer a wide range of CMOS processes. This is the biggest advantage

of RF CMOS over bipolar and BiCMOS processes.

Cost, Yield and Integration Levels: The main appeal of CMOS is the relatively

low cost combined with high levels of integration. Shrinking device sizes is an attractive

feature for digital CMOS circuits as it improves both speed and power dissipation [18].

This is an added motivation for CMOS integration of analog components. Bipolar tran-

sistors are also more prone to defect density as they are minority carrier devices. CMOS

processes therefore have a higher yield. However, arguments presented in [17] point out

that when costs associated with packaging and testing are included, the price tag on

RF chips are not significantly different. Also, any RF or analog CMOS process requires

more masks for good passive components, adding to fabrication costs. Combined with

the performance advantages of bipolar devices, the cost factor advantage of CMOS can

be challenged .

Based on above discussions it can be concluded that the choice of technology

depends on the kind of application. If integration levels of wireless systems become

sufficiently high for Radio on Chip (ROC) to be feasible, CMOS processes may reduce

the entire chip-set into one big chip with small supporting chips. When the die cost of

the chip is a significant portion of the overall system costs, CMOS could have significant

edge. For several (low end) radio systems CMOS RF performance may be comparable

to BiCMOS implementations and may be preferable. The attempt of this thesis is to

realize high-speed, low-power dual-modulus prescalers in RF CMOS technology. The
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implementation of the dual-modulus prescalers in Chapter 4 highlights the tradeoffs

involved with the CMOS design.

3.4. Current Mode Operation

CMOS static logic is widely used in mixed-signal integrated circuits because of

its ease of design, high packing densities, wide noise margins, etc. The most significant

feature is that the static power dissipation is nearly zero. However, its power dissipation

at high frequencies due to the displacement current Cout(dVout/dt) accounts for dynamic

power Pdynamic ≈ Cout (∆VL)2 f. As illustrated in Figure 3.3, the current spikes during

switching could flow through parasitic resistances and inductances associated with the

Vdd and Gnd power supply grid networks, bond-pad, package parasitics, etc. and cause

Vdd bounce or Gnd bounce by virtue of the I ·R or L· dI
dt voltage drops. This kind of digital

switching noise could show up as annoying glitches in the analog part of a mixed-signal

chip. Although there has been much research progress in the modeling of this substrate

coupling in mixed-signal ICs, the effects of the digital switching is difficult to predict,

making it difficult to eliminate with conventional circuit and layout techniques [19].

CMOS static logic belongs to the category of voltage switching circuits in which

Vdd or Vss is switched to the output node. The fundamental reason for the the digital

switching noise is that the power supply current is not held constant during output

voltage transitions [20]. This observation has motivated the development of source-

coupled logic circuits. Source-coupled logic circuits, also referred to as MOS current

mode logic circuits (MCML) work on the principle of current steering controlled by an

input to a differential pair. As shown in Figure 3.4, the tail current is steered on either

side of the source-coupled pair and the output differential voltage determined by the tail

current and load resistances. This kind of differential logic has several advantages over

conventional CMOS as discussed in detail in this section.
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FIGURE 3.3: (a) CMOS ring oscillator;(b) Switching spikes in a CMOS inverter.

3.4.1. Speed-Power Advantage

Several comparisons of CMOS and MCML circuits have been carried out in liter-

ature [21, 22, 23]. Suppose a linear chain of N identical gates, all with an identical load

capacitance C on each output node was compared and contrasted in the two different

cases, the total propagation delay (D) of the chain of gates will be proportional to:

DCMOS =
N × C × Vdd

0.5k × (Vdd − Vt)α
(3.4)

where, k and α are parameters depending on transistor dimension and process. Assuming

the CMOS logic is clocked at a frequency equal to the inverse of the propagation delay,
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FIGURE 3.4: Principle of current-mode logic.

the dynamic power dissipation, power-delay and energy-delay products are given by :

PCMOS = N × C × V 2
dd ×

1

DCMOS
(3.5)

PDCMOS = N × C × V 2
dd (3.6)

EDCMOS = N2
· 2

C2

k

V 2
dd

(Vdd − Vt)α
(3.7)

The objective of digital design is to optimize the energy-delay (ED) product. It

can be derived that the optimized supply voltage for minimizing the ED product for

CMOS is

Vdd =
2Vt

3 − α
(3.8)

The power-delay equations for a CML inverter cascade are [22] :

DCML = NRC =
N × C × ∆V

I
(3.9)

PCML = N × I × Vdd (3.10)

PDCML = NIVdd ×
NC∆V

I
= N2

× C × ∆V × Vdd (3.11)

EDCML = N2CVdd(∆V ) ×
NC∆V

I
=

N3C2Vdd∆V 2

I
(3.12)

(3.13)

where, ∆V is the output voltage swing = I · R
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The above results indicate that CML circuits can be optimized by reducing the

supply voltage, or the signal voltage swing, and by increasing the tail current.

Intuitively, the higher speeds of current-mode operation can be attributed to two

main aspects - the transistors need not be completely turned on/off as in the case of

CMOS, and the lower voltage swings can charge/discharge the output node capacitance

much faster. The conventional power advantage of CMOS circuits does not hold at such

high frequencies as their dynamic power dissipation is comparable to or even worse than

the static power loss in CML circuits.

3.4.2. Common-Mode Noise Suppression

One of the most significant drawbacks of CMOS logic is the effect of the current

spikes during switching. The large transient currents could lead to L dI
dt voltage drops of

the order of about 200 mV. Since many analog signals could be much smaller than this,

such variations could be disastrous. The constant current drawn by source-coupled pairs

reduces this noise coupling by a large extent.

3.4.3. Substrate Coupling

Another source of switching noise is the injection of currents into the substrate

by charging/discharging of the drain-bulk capacitance (Figure 3.5(a)). In case of single-

ended rail-to-rail CMOS logic, the voltage variation modulates the depletion widths

causing a current

isub = Cdb
dvout

dt
(3.14)

The use of differential logic in CML circuits cancels these substrate currents to a first

order as illustrated in Figure 3.5(b). The total substrate current is now

isub = Cdb1
dvout

dt
+ Cdb2

dvout

dt
(3.15)
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The cancelation is not exact as Cdb is non-linear and depends on the voltage across it.
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FIGURE 3.5: Substrate current injection in (a) CMOS, (b)CML.

Apart from the above mentioned advantages, differential CML gates give some

implementation advantage with the availability of both true and complementary phases

of the signal without the need for separate inverters. Finally, their low swing makes

them more compatible for low-voltage designs.

3.5. Pulse-Swallow Feedback Delays

The conventional dual-modulus prescaler with the pulse-swallow architecture is

usually limited by the speed of the pulse-swallow operation. In other words, the divide-

by-N+1 operation is the speed bottleneck of dual-modulus prescalers. Since the primary
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goal of this thesis is to optimize the speed, the feedback loop was analyzed. Referring

to the synchronous divide-by-4/5 circuit of Figure 3.2, following the clock edge on which

Q2 must change , the next valid clock transition needs to accommodate the propagation

delay through the gate G and the input stage of DFF2. This signal delay can make the

divide-by-3 about twice as slow as the divide-by-2 operation.

Some design techniques can be used to reduce these propagation delays in the

synchronous division. The combinational gates can be embedded into the first stage

of the D flip-flops. Previous implementations of dual-modulus prescalers [24, 14] have

incorporated a gate with the flip-flops. The differential current-mode implementation of

these “gated” flip-flops has been discussed in the next chapter.

3.6. Ring-Oscillator Speed Analysis

The synchronous portion of the prescaler is the critical design to be optimized

for speed. Design optimization of a simple divide-by-two flip-flop begins with reducing

the propagation delay of the CML D flip-flops. To estimate the maximum obtainable

input frequency that can be divided by the DFF, the toggle flip-flop (divide-by-2) can be

regarded similar to a 3-inverter ring oscillator. With the availability of complementary

signals, ring oscillators can be made with even number of stages as well. A divide-by-4

circuit is similar in structure to a 4-stage ring oscillator with the complementary output

looping back to it’s input stage. This parallel between the two circuits is illustrated

in Figure 3.6. Theoretically the maximum input frequency toggled by the DFF would

be twice the oscillation frequency. However , because of the additional loading of the

positive feedback latch in the flip-flops, the input frequencies will be less than twice the

oscillation frequencies [24].

The equivalence of ring oscillators and prescalers is significant in analyses for speed-

power tradeoffs and in understanding the role of various design parameters such as



28

Q


CK


D

latch


Q


CK


D

latch


Q


CK


D

latch


Q


CK


D

latch


D
 D
Q
 Q
 D
 Q
 Q
D


CLK


CLK


(a)


(b)


FIGURE 3.6: Analogy between (a) ring oscillator and, (b) frequency divider.

voltage swing, transistor sizes and current consumed in each stage. The results of the

analysis are explained in detail in the next chapter.
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CHAPTER 4. ANALYSIS, CIRCUIT DESIGN AND

IMPLEMENTATION

Having discussed system level considerations in dual-modulus prescalers, this chap-

ter discusses the analysis and transistor-level implementation aspects. The pulse-swallow

operation, explained in principle in Section 3.1, is discussed in the context of the divide-

by-8/9 prescaler that was designed and implemented.

4.1. 8/9 Dual Modulus Prescaler Operation

The 8/9 dual modulus prescaler is illustrated in Figure 4.1. The synchronous

portion, which works at maximum frequency, is the critical block to design. The master-

slave D flip-flops FF1 and FF2 perform conventional divide-by-4 in the absence of a

“pulse-swallow” signal. Such a control signal can be suppressed by disabling FF3 when

Mod-Select signal is inactive. The output of the FF2 is further divided asynchronously

to generate a divide-by-8 signal. When this divide-by-8 signal, Q4, is combined with

the Mod-Select signal appropriately, flip-flop FF3 gets included in the divider feedback

loop in such a way that FF1 is forced to hold state for exactly one extra clock period.

The output of the synchronous portion now has a duty cycle of 3
5 , i.e., the output Q2

is high for 3 and low for 2 clock periods. Q2, obviously, follows a high for 2, low for

3 clock-periods trend by virtue of the differential operation of the current mode logic.

As the synchronous pulse clocks the asynchronous divider, this translates into Q3 being

high for 5, low for 4 pulses (and vice-versa for Q3). The time period of the prescaler

output is now 9 pulses giving it the 8/9 modulus operation.

The pulse-swallow operation is emphasized with a timing diagram (Figure 4.2).
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FIGURE 4.2: Timing diagram explanation of pulse-swallow operation.

The prescaler is assumed to be in the ÷5 mode. The output of the flip-flops FF1 and

FF2 are, as expected, time shifted by one clock period. The asynchronous divider is

clocked by Q2. The asynchronous output, by virtue of an ‘AND’ operation with Mod-
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Select, clocks FF3 so that Q3 is a time-shifted version of Q2. The pulse-swallow control

signal Q3 can thus be considered a ‘NOR’ operation on asynchronous output and Q2.

The control is used to ‘SET’ FF1, so that Q1 stays high for one extra pulse more than

it would have been without the pulse-swallow operation. The dashed lines show the

conventional ÷4 waveforms.

4.2. Design Considerations

The core block to be optimized for speed-power is the synchronous DFF. A de-

tailed analysis of the parameters involved and the optimization has been discussed. As

discussed briefly in the earlier chapter, the analysis of the divider structure can be sim-

plified by exploiting the similarity with a ring oscillator. Figure 3.6 explicitly showed this

analogy between the two structures. The primary advantage of analysis on the basis of

ring oscillator is that the maximum ring oscillation frequency is a clear indication of the

speed of the DFFs in the divider. In general, ring oscillators are used to characterize a

process because their oscillation frequency depends heavily on the fT of the transistors.

The primary design parameters involved in optimizing the CML Flip-Flops are analyzed

in detail in this section.

4.2.1. Voltage Swing

One of the most significant attributes of current-mode gates over CMOS is its

lower output voltage swing. Intuitively, the output node capacitance needs lesser time

to charge up and implies faster operation. The formal mathematical equation for the

propagation delay of a CML gate may be derived assuming a linear model as shown

in Figure 4.3. Assuming symmetry of the differential pair, the initial condition of the
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circuit at the beginning of a switching transient initiated by input voltage swing is :

Vo+(t = 0−) = VDD (4.1)

Vo−(t = 0−) = VDD − I · R (4.2)
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FIGURE 4.3: RC time-constant linear delay model in CML operation.

At the end of the transients, the current is steered from one leg to the other. The

output voltages after settling would be

Vo+(t → ∞) = VDD − I · R (4.3)

Vo−(t → ∞) = VDD (4.4)

Equating transient currents at the output node (assuming instantaneous current

switching), we obtain the first order differential equation,

C ·
dVo

dt
+

Vo

R
=

VDD − I · R

R
(4.5)

Solving the above differential equation with the initial and final conditions, the

output voltage can be expressed as

Vo+ = (VDD − I · R)(1 − e−t/RC) + VDDe−t/RC

Vo+ = VDD − I · R(1 − e−t/RC) (4.6)

Propagation delay can be defined as the time taken for the output node to charge/discharge

to a desired fraction of the final voltage. For instance, the time taken for the output
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to reach within 1% of its final value in the above case of Vo+, can be derived from

Equation 4.6.

1.01(VDD − I · R) = VDD − I · R(1 − e−t99%/RC)

=⇒ t99% = R · C ln

(

IR

0.01(VDD − IR)

)

(4.7)

The propagation delay evidently depends on the voltage swing I · R in a direct

proportion. The voltage swing is a design parameter that depends on other factors

as well. In standard CMOS digital circuits, the mid-swing voltage gain is considered

representative of the robustness of the circuit to noise [25]. Digital logic requires a point

on the DC transfer curve where the gain is greater than 1. This requirement on the

gain per stage should be true for a ring of inverters to sustain oscillations as well. The

mid-swing gain is given by

Av = gm · RL (4.8)

=
2I

∆
·
Vsw

I

= 2
Vsw

∆
(4.9)

where, Vsw is the swing and ∆ refers to the over-drive voltage VGS -VT , or VDsat.

Another significant reason for higher voltage swings is the response of the posi-

tive feedback latch. The output of the preamplifier (differential-pair) of the CML latch,

although amplified, still needs to be pulled to the output levels needed to avoid metasta-

bility. The latch positive feedback regenerates the output signals to maximum possible

swings.

The conventional CML Flip-Flop of Figure 4.4 works similar to a latched com-

parator with the positive feedback supplementing the gain of the differential pair. The

latch-mode time constant in the positive feedback phase has been derived using a lin-

earized model in [26, pp.319-321]. The result derived indicates that the transient response

of the latch is represented by the solution

∆V = ∆Voe
(Av−1)t/τ (4.10)
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where ∆Vo is the initial voltage difference at the beginning of the latch phase.

If it is necessary for a voltage difference of ∆Vlatch to be obtained in order for the

subsequent preamplifier to safely recognize the correct output value, the time required

for this to happen can be derived from Equation 4.10 to be

Tlatch =
CL

Gm
ln

(

∆Vlatch

∆Vo

)

(4.11)

So if ∆Vo is small, the latch time can be larger than the allowed time to latch (half the

clock period) causing metastability. Further, low voltage swings are more susceptible to

noise and mismatch. Although not very critical in the case of frequency dividers, this

would be relevant for the design of oscillator delay stages.

The upper bound on voltage swings (Vsw) is established by biasing conditions of

differential pair transistors. When one differential delay stage drives a similar stage, then

the differential pair transistor with a high input voltage requires a large enough VDS to
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remain in saturation, or

VDS ≥ VGS − VT

VDD − Vsw − VS ≥ VDD − VS − VT

⇒ Vsw ≤ VT (4.12)

4.2.2. Current Consumption

The current flowing in each stage of the divider/oscillator contributes directly to

the static power consumption of the circuit. Since the propagation delay is the time

taken for the available current to charge the output node capacitance, the circuit speed

is directly dependent on the current through the stage. However, an interesting question

that arises is whether there is an upper bound on how fast a circuit can be made to

operate if there was unlimited power to burn. In the case of a ring oscillator, if the

voltage swing is assumed fixed, scaling up the currents would require (1) reduction

in load resistance to maintain swing, and (2) proportional increase in NMOS device

sizes so that the over-drive ∆ remains same. The increase in the device size implies

a proportional increase in parasitic capacitances. Therefore, with a RC time-constant

dependent propagation delay, the above two variations nullify the effect of higher current

on improvements in speed. At very low device sizes/currents, the gain of the oscillator

is not high enough to sustain oscillations.

This result was verified with a simulation on the ring oscillator. Table 4.1 shows

that the maximum oscillation frequency of the ring (fosc) does vary with current (I),

but not as significantly as one would have liked for the amount of static power traded

off. The parasitic capacitances associated with the resistive loads(R) do not scale down

proportional to the resistance. So the net RC time constant of the output node starts

increasing with current giving diminishing returns in the speed.
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TABLE 4.1: Current-Speed relation.

Current I(µA) W(µm) load R(KΩ) fosc(GHz)

50 0.8 12 5.8

100 1.6 6 6.1

200 3.2 3 6

400 6.4 1.5 6.13

4.2.3. Transistor Sizing

The sizes of the transistors in the current mode flip-flops are tightly coupled with

the other design parameters of swing and current. The primary considerations involved

in deciding the device size are those of speed, voltage swing and current steering ratios.

The RC time constant equations in Section 4.1 suggest that lower device sizes (and

hence, lower parasitic capacitance) reduces the delay in each stage. Ideal CML inverters

have a perfect current switch that steers current from one leg of the differential pair to

the other. In reality, however, some finite current is going to flow in the “OFF” path

preventing full current from being available at the output node of the “ON” transistor.

Assuming a current of ION flows through the active transistor and IOFF through the

other leg so that I = ION + IOFF , the effective voltage swing is

Vsw = R[ION − IOFF ] = R[2ION − I] (4.13)

This current steering ratio is a parameter that depends on the voltage swing and the

device size. It has been observed in [24] that the current steering ratio can be a useful

parameter to indicate the robustness of the circuit. The analysis in [24] also accounts

for process variations and temperature variations which exacerbate the effect of on CML

latches. In this prescaler design too, the device sizes were sized on the basis of a fixed

DC current steering ratio (taken as 95%). So the device size involves a tradeoff between
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maximum operating speed and robustness to process and temperature variation.

The approach to optimize the design of the inverter stage for each flip-flop began

with analysis of ring oscillation frequency with transistor sizes. Simulations results for

three particular cases were investigated:

1. Ring oscillator speed with decreasing device dimensions maintaining constant volt-

age swing and tail current of 100 µA (Figure 4.5(a)). As the percentage current

steering will be lower for smaller transistor sizes, the load resistance is higher than

Vsw

I . The increases in resistance is, however, not significant enough to setback the

improvement in node capacitance. So, although the slope of the frequency varia-

tion flattens out at lower device dimensions, the general trend encourages smaller

size for faster operation.

2. Ring oscillator speed with decreasing device dimensions maintaining current steer-

ing percentage fixed and the total current at 100 µA constant (Figure 4.5(b)). The

load resistance used is assumed ideal for simplicity. The above discussion indicates

that the current steering requirement imposes need for higher device dimensions,

and so, the maximum oscillation frequencies are lower. The trend remains the

same as in the case of the fixed swing

3. The above simulations, when run with the real resistance RBH2 available in the

National BiCMOS8i process, shows a “sweet-spot” at very low device sizes (Fig-

ure 4.5(c)). This inflection occurs because at very low device sizes, the load re-

sistance needed to compensate for the lower steering is so high that the parasitic

capacitances associated with these resistances negate the reduction of the tran-

sistor parasitic capacitances. The parasitic capacitances associated with the load

resistance are small and may be swamped out when interconnect capacitances are

included in a real simulation with extracted netlists.

4. The fourth and most relevant set of simulations was done with the divide-by-4

circuits. The input clock frequency was stepped up for different device sizes in the
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flip-flop until correct division operation observed. Although the ring-oscillator is

similar to the divider circuit, there are some marked distinctions. The additional

positive feedback latch stage in the flip-flop not only loads the output of the CML

preamplifier stage, but also helps the speed with its gain. The differential pair and

the latch have similar transistor sizes for optimum current steering. The design

had to account for process and temperature variations as well. The schematic of

the final current-mode D flip-flop of the prescaler, designed on the basis of above

considerations is as shown in Figure 4.6. The clock and signal swings were set to

about 0.6 V with current through each CML latch at 100 µA.
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Figure (a): Ring Oscillator simulations with constant swing
Figure (b): Ring Oscillator simulations with fixed current steering
Figure (c): Ring Oscillator constant steering simulations with RBH2 

FIGURE 4.5: Ring oscillator simulation comparisons.
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4.3. Implementation Of Pulse-Swallow Logic

As mentioned earlier, the speed bottleneck of the dual-modulus prescalers is in

the divide-by-N+1 implementation. This is obvious considering the fact that the N+1

modulus division requires the divide-by-N signal (and hence, the delays associated with

it) as well as the delay in generating the pulse-swallow signal. There have been some

clever design techniques to reduce the pulse-swallow delays [14, 27, 15] using bipolar

ECL and ECL-like differential logic. Merging the logic gates into the flip-flop saves

power and increases operating speed. However, some of the above methods, especially

the previous generation prescaler implemented in the National BiCMOS7 process and

its MOS current-mode equivalent in [15] have their disadvantages.

The gated D-type master-slave CML latch is shown in Figure 4.7(a). The reset

signal needs to be combined with the divider signal to pull the ouput node to a logic

‘low’ state. Unlike the simple DFF where the signals are differential and symmetrical,

the OR function of these gated flip-flops requires that the input signals compare their

levels with a reference voltage to determine whether whether the signal is high or low.
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In current-mode logic, the signal swing is low and the DC value of this reference may

tend to shift around due to process variations. The way the reset operation works is

based on providing a dominant pull-down path through the reset transistor in parallel

with the DFF signal transistor. The disadvantage of such a technique is that since

the reset operation is essentially single-ended and asymmetric, we loose many of the

common-mode noise immunity advantages discussed in the previous chapter. Also, since

it requires a dominant pull-down ‘reset’ transistor, this needs to be 4× or 5× wider than

the conventional differential pair/latch transistors. This larger device for the one extra

pulse out of the N (divide modulus) pulses loads the differential pair and slows down the

prescaler operation. Any logic that requires a “fight” between two signal paths cannot

be robust.

fully symmetric 
flip−flop gating

Set signal
Reset /

Set signal
Reset /

Set signal
Reset /

FIGURE 4.7: (a) Parallel pull-down latch structure for gated flip-flop.(b) Fully symmet-
ric flip-flop gating.

A more symmetric implementation of the reset/set operations on the gated flip-

flops is shown in Figure 4.7. The principle of operation is based on the idea of stacking

CML gates (their low swing allows multiple stacking) to save power [14]. Since a CML

gate has only one structure, and all logic operations can be derived from one basic

CML cell, the reset/set operation is defined by combinational logic. For example, the
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conventional ‘reset’ operation is an ‘AND’ of signal with ‘LOW’ and ‘set’ operation is an

‘OR’ with ‘HIGH’. A CML gate’s structure is inherently asymmetric with respect to the

output node loading. Careful layout by appropriate source/drain sharing of transistors

and use of dummy devices can alleviate problems due to this load mismatch.

4.4. Asynchronous Flip-Flop

The asynchronous divide-by-two flip-flop is simpler to design as it works at fclk/4.

To design the asynchronous DFF4, the device sizes of DFF1 are retained, but the current

is scaled down. Since the output of DFF4 needs to be combined with the modulus-select

signal to control the pulse-swallow flip-flop DFF3, the output swing should be the same

as the signal swing in the rest of the circuit. The load resistance needs to be scaled up

to compensate for the lower current in the stage.

Figure 4.8 shows the asynchronous ÷2 stage schematic. This stage also needs

an input buffer because the divide-by-4/5 signal that clocks this stage is usually not

a clean reference. Simple CML inverter buffers are used with source-followers for level

shifting the signal level to the clock bias levels. In this design, the targeted operation

was 8/9 dual-modulus and so, requires only one such asynchronous divider with the 4/5

synchronous stage. Higher moduli can be obtained by cascading more toggle flip-flops

(TFFs).

4.5. RF Buffer

The design of the dual-modulus prescaler was implemented entirely in CMOS,

which was one of the key objectives of this work. The prescaler in the PLL loops are

driven by the VCO output. It is typical to buffer the VCO outputs to shield the noise-

sensitive block from the digital switching in the prescaler. The specifications on the



42

2u

4u/0.5u

2u/0.25u2u/0.25u

2u

D

Qbar
Q

11.6K 11.6K 11.6K

output

11.6K

From DFF2

VDD

8u/0.5u
4u/0.5u

Dbar

VDD

DFF2 out

50uA 50uA 

ClkClkbarClkbarClk 2u/0.25u

2u

2u/0.25u2u/0.25u

2u

2u/0.25u

0.25u

Ω Ω

0.25u 0.25u0.25u

ΩΩ

FIGURE 4.8: Asynchronous divider.

dual-modulus prescaler requires operation for signals in the range -20 dBm to 0 dBm

power level. This needs to be converted to ≈ 0.6 V single-ended peak-to-peak swings

to clock the prescaler. The above requirement imposes a gain specification of about

26 dB (×20) at the targeted signal frequencies of 2.5-3 GHz, which translates to gain-

bandwidth product requirements to the order of 50 GHz. The buffer was implemented

using both CMOS and bipolar technology and the performances compared.

4.5.1. CMOS RF Buffer

The gain requirement for low-power input signals implies the need to cascade mul-

tiple gain stages. The primary requirements on the output clock signal generated by the

RF buffer are:

• The output signal should have a high rise time so that the the differential pair

transistors of the prescaler spend lesser time in the linear region. This achieves

lower total noise contributed by the transistors [5]. The output waveform should

effectively be as close to a square waveform as possible with signal swings of 0.6 V.
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• Based on DC biasing conditions, if the clock signal amplitude is large, the differ-

ential pair transistors driven by the clock could swing into triode region. This is

undesirable for robust current switching.

With the above requirements in consideration, a cascade of amplifiers was designed.

The first stage does a single-ended to differential conversion and the remaining stages

provide increasing gain (Figure 4.9). In order to limit the output swing, each of the

gain stages has a common mode load resistance with about 0.9 V drop across it. This is

effectively like working with a 1.6 V supply. To shape sinusoidal waveforms into square

waves, more stages of amplifiers and higher current needs to be burned to sharpen the

edges of the clock.
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FIGURE 4.9: CMOS RF buffer.

The load resistances were chosen to allow no more than 0.6 V swing across them.

The device sizes are chosen using parametric sweep of the transistor widths to obtain a

high gain, square waveform for a fixed current and swing. If the transistor W/L is large,

its gm is high, but it loads the previous stage as well. So the parametric sweep yields an
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optimum device size for high gain. Only the first differential to single ended stage does

not require the supply level-shifting resistance.

In order to generate square waveforms for worst case conditions (slow transistors,

hot temperature conditions), 12 gain stages were required and with about 1.2mA in

each stage. To characterize the “square”-ness of the waveforms, the rise/fall time of the

current through the final output stage (time to swing from 5% to 95% of final value) as

a proportion of the time period (which needs to be ≥ 2.5 GHz). In the worst corner of

slow process/hot temperature, the rise time with the former criterion is about 26% of

the time period. Effectively, the differential pair is in the linear region about 52% of the

time. For nominal case operation, this rise time is 15% of time period.

The output swing can achieve the desired 600 mV with 6 gain stages. The addi-

tional stages and larger current can be traded-off with the noise criterion. Some of the

clock buffer output waveforms (Figure 4.10) are shown here to illustrate the performance

of the design. This buffer’s power consumption is unacceptably high and the number of

cascaded stages would increase the clock jitter.

Clock waveforms with 12-stage CMOS buffer


Time(s)


 


Time(s)


Clock waveforms with 9-stage CMOS buffer


FIGURE 4.10: Clock waveforms : CMOS buffer output.
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4.5.2. BiCMOS RF Buffer

The significant advantages of bipolar transistors for high frequency analog appli-

cations were outlined in the previous chapter. The much higher gm

Id
of the device makes

it possible to obtain higher bandwidths. The RF amplifier/buffer shown in Figure 4.11,

can be implemented with just two gain stages using the available NPN devices for the

differential pairs. The primary reason why the power supply had to be level shifted in the

CMOS implementation is that source-follower level shifters have an AC gain at 2.5 GHz

of about 0.4, therefore degrading the gain obtained from the differential amplifiers. In

the case of bipolar transistors, the small-signal AC response of emitter followers has a

wide bandwidth so that the small-signal gain is approximately unity. This enables full

utilization of the power supply.
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FIGURE 4.11: BiCMOS RF Buffer.

The design issues for bipolar buffer are listed below :

• The bias currents should be set such that the transistors work to the left of the
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peak fT point. The fT vs current characteristic was obtained for the available npn

transistors and the bias point point chosen accordingly.

• The swing of the clock signals must be maintained such that the collector-base

junction is not forward biased at any instant. The resistances and the bias currents

must be set such that the largest input signal amplitude does not saturate the npn

transistors.

• The frequency response of the bipolar buffer must allow for sufficient gain to switch

currents completely at the final output stage. The total capacitance at the common

emitter junction of the differential pairs determines the high frequency response

of the and should be minimized. As bipolar transistors suffer from large collector-

substrate capacitance, MOS current sources are used to bias the transistors.

The single-ended to differential conversion cannot be implemented as in the case of the

CMOS buffer due to the mismatch introduced by base currents. So the common mode

of the differential pair transistors of the first stage are set by independent references,

generated by resistive voltage division.

4.6. Output Buffer

The dual-modulus prescaler in a conventional frequency synthesizer drives a counter

or the phase-frequency detector of the PLL. So the load of the prescaler is usually ca-

pacitive, i.e., the gate capacitance of a few transistors. For this test chip, since the

dual-modulus prescaler was implemented as a stand-alone block, it needs larger drive

capability. The output buffer needs to be designed to drive a 50 Ω resistance,and at

least a 5 pF capacitive load. The biggest concern with driving these huge loads is the

amount of current that is drawn during voltage swings of the prescalers output.

To match the output impedance as well as to supply this large current a source-

follower/emitter-follower buffer may be used. The currents may be of the order of a few
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milliamps. MOS implementations using source-followers required large device sizes to

support the current. These devices may then load the prescaler, affecting its operating

speed. A more feasible alternative to satisfy this high drive capability is to use bipolar

transistors (Figure 4.12). To avoid large DC currents due to the output resistance, the

buffer is AC coupled to the load. The sourcing current to charge the output node needs

to be supported by the transistor of the emitter follower. Multiple transistors are used

in parallel so that each transistor only carries current corresponding to its optimum fT .

The sink current, however, is provided externally through resistances.
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FIGURE 4.12: BiCMOS Output Buffer

A new issue that crops up with the use of bipolar drivers is the large base current

component. With a collector current gain β of 100, the base current could be as high

as 250 µA. The isolation buffer between the prescaler from the bipolar devices needs to

supply the extra base current into the input of the emitter follower.
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4.7. Layout Considerations

The layout of RF building blocks is very important in realizing expected perfor-

mance. The main layout considerations and techniques to optimize the dual-modulus

prescaler system have been summarized below.

4.7.1. Symmetry Considerations

One of the highlights of implementing the dual-modulus prescaler system with

current-mode logic is the advantage of common-mode noise immunity achieved by its

differential and symmetric operation. Effect of random mismatches could be significant in

introducing clock jitter, especially with small device sizes. Since the prescaler and every

flip-flop is desired to have large-signal symmetry, the dummy transistors of Figure 4.13

ensure the output nodes of the differential amplifier in the first level stacking see the same

signal swing. The obvious drawback is that the capacitive loading is now asymmetrical

on the output nodes. However, since the transistor sizes are quite small, the dominant

capacitances of these asymmetric output nodes is the gate capacitance of the positive

feedback latch and the interconnect capacitance. So this asymmetry is expected to have

a lesser significance compared to signal path symmetry. Conventional techniques, such

as sharing common source terminal of differential-pairs and implementing all transistors

with respect to unit transistors, have also been used in drawing the layout.

4.7.2. Synchronous Divider Floorplan

As explained previously, the pulse-swallow feedback limits the speed of opera-

tion. So, to optimize the layout with speed consideration, the delays in the critical

synchronous divider path need to be reduced. This circuit is dominated by interconnect
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FIGURE 4.13: Flip-Flop3 with dummy devices to maintain signal symmetry.

capacitance, so it is imperative to ensure that wiring delays are minimized, especially

in the synchronous divider. It was obtained from analysis of the critical delay paths

that placing the pulse-swallow flip-flop DFF3 as close as possible to the first stage of

the flip-flop DFF1 reduces the feedback delay. The synchronous divide-by-4 operation

between DFF1 and DFF2 will have a lesser delay compared to the propagation path of

the divide-by-5. A simple floor-plan of the layout of the dual-modulus prescaler, not

including the modulus-selection logic, is shown in Figure 4.14.

Output BufferRF Buffer Shift
LevelDFF2

Gate
CML DFF1DFF3

Asynchronous

DFF4

FIGURE 4.14: Floor plan to optimize pulse-swallow feedback delays.

It was verified from simulations on the extracted netlists that this placement of the

flip-flops and combinational logic ensures breakdown of division operation for both mod-
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ulus at approximately similar frequencies. If the layout floor plan had been implemented

as in the sequence of the block diagram of Figure 4.1, the divide-by-9 operation breaks

down approximately 300 MHz input clock frequencies below the divide-by-8 modulus

division. It is obvious that the higher operation of the divide-by-N stage alone is not

desired. By shuffling the arrangement of the flip-flops, we are trading off the speed of

the synchronous division with the speed of the pulse-swallow division.

4.7.3. Minimization of Interconnect Capacitance

As the interconnect capacitance at the output node of each differential ampli-

fier/latch dominates the RC propagation delay, a study of the metal layer used to route

was performed. Further, we have a choice between two types of routing–using a top

level metal (M4, M5) that is routed above the rest of the layout to connect end-to-end

flip-flops, or to route over a longer path using lower-level (M1, M2,or M3) metal avoiding

signal crossing. It was observed that routing using M5 right over the the rest of the layout

has lesser RC parasitics. Parasitic coupling between the signal lines and the power buses

can be avoided with this strategy as well. Simulations using extracted netlist confirm

the above deductions. Another important rule that was followed in the layout was to

isolate the clock lines from overlapping signal lines to the maximum extent possible to

avoid disturbing the critical reference frequency.

The top-level layout of the dual-modulus prescaler is shown in Figure 4.15. The

prescaler, input and output buffer layout is captured in Figure 4.16.
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FIGURE 4.15: Top-level chip snap-shot.

FIGURE 4.16: Layout.
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CHAPTER 5. SIMULATION AND MEASUREMENT

RESULTS

This chapter is a discussion of the simulation results obtained and a performance

evaluation of the prototype chip. The dual-modulus prescaler, analyzed and described

in the previous chapter, was designed and laid out using the CADENCE simulation

environment. A chip was fabricated using the National BiCMOS8i 0.25 µm, 5-metal

layer process. The chip was mounted on a 20-pin ultra-thin chip scale package (UTCSP)

provided by National Semiconductor. The die photograph of the fabricated chip is shown

in Figure 5.1.

FIGURE 5.1: Die photograph of OSU-Prescaler test chip.
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5.1. SpectreS Simulations

The overall system that was simulated is shown in Figure 5.2. The dual-modulus

prescaler and the input/output buffer blocks have been discussed in the earlier chapter.

The modulus-selection logic is usually determined by the program counter and swallow

counter data in integer-N PLLs or, by means of a randomized modulator output, as in the

case of a ∆Σ fractional-N synthesizer. For the prototype testing a worst-case switching

was decided upon. Worst case switching happens when the modulus is changed between

N and N+1 every other complete cycle. This can be easily realized using a divide-by-2

asynchronous block clocked by the 8/9 modulus output from the prescaler.

CMOS Dual-

Modulus Prescaler
RF Buffer
 Output Buffer


Divide-by-2


Mod_Select signal


RF input

-20dBm - 0dBm


f
out


f
out
bar


FIGURE 5.2: Top-level of dual-modulus prescaler implementation.

The operation of the prescaler was verified by looking at the transient waveforms

and checking for dual-modulus operation. The slowest case operation was obtained

with the slow process transistor models and hot temperature (850C). A typical transient

simulation result of the prescaler operating at 2.75 GHz is shown in Figure 5.3.

Although the fast-case transistor models and higher input power levels appear

better for speed performance, a possible issue could be the robustness of the buffers. As

shown in the transient waveform of Figure 5.4, the bipolar buffers tend to saturate at



54

Divide-by-8
 Divide-by-9


FIGURE 5.3: Prescaler output waveform for slow process/hot temperature corner.

0dBm input signal power levels.

It was observed in simulations that the divide-by-9 limits the operating frequency

of the prescaler. Investigations by following the waveform delays through the pulse-

swallow feedback loop indicate that the propagation delays through the asynchronous

divider output and modulus-selection logic causes a time-delay between the output of

DFF2 and the RESET signal on DFF3. This delay suppresses the pulse-swallow signal

even when mod-select has been asserted. The simulation results indicating measured

delays encountered in the pulse-swallow operation is shown in Figure 5.5.
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FIGURE 5.4: Prescaler output waveforms for 0 dBm input, fast/cold operating corner.

5.2. Measurement Set-Up

The prescaler measurement set-up is shown in Figure 5.6. The chip’s input/output

pins have been labelled for easy identification. The input frequency to the chip is through

a signal generator to obtain progressively higher clock frequencies by ramping the control

voltage. The power levels are also to be controlled to verify operation of the RF buffer.

The control to vary the speed of the prescaler is by varying the current to each stage

of the synchronous divider. The current bias is decided by external reference voltage

or resistance. Since the bias currents of the RF buffer, prescaler and output buffer are
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FIGURE 5.5: Dual-modulus division operation breakdown.

all mirrored with the same bias transistor, increasing the bias current worsens power

consumption of all three blocks.
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OutbuffVDDVDD
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OSU

Bias

RFin+
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FIGURE 5.6: Test setup.
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5.3. Measurement Results

The measurement results of the dual-modulus prescaler operation have been tab-

ulated in this section. The chip testing yielded the following measurement observations

and inferences:

• The prescaler operation frequency varies with input power levels. The character-

istic of the divider speeds when input levels are varied from -25 dBm to 0 dBm

(corresponding to signal amplitudes of 18 mV – 320 mV) has been obtained. As

shown in Figure 5.7, low power levels are likely to have lesser operation frequency

because of the low noise margins. Very low power, high-frequency signals may be

amplified insufficiently by the RF buffer inducing metastability in CML latches of

the prescaler. At higher power levels (≥ -16 dBm), corresponding to higher am-

plitudes, the second stage of the bipolar buffer may be driven into saturation. As

bipolar transistors take longer time to get out of saturation, this could be the reason

for lower clock speeds. Note that this implies the prescaler could still be capable of

functioning and the dual-modulus operation is restricted by the buffer. Optimum

prescaler speeds were obtained at signal amplitudes of ≈ 50 mV (-16 dBm).

• The maximum operating frequencies obtained from 21 chip samples and the opti-

mum power-levels and biasing currents at which this was obtained are tabulated

in Table 5.1.

• The output waveform is a divide-by-8/divide-by-9 alternating waveform which has

been observed operational until frequency of 2.1 GHz with about 2 mA consumed

in the CMOS prescaler. Figure 5.8 shows the output waveform as observed on the

oscilloscope, with the specified biasing and signal conditions.

• When the bias current is set such that the current mirrored through the buffers
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TABLE 5.1: Chip performance over 21 samples.

Sample Number Max. frequency (GHz) Signal amplitude (dBm) Prescaler I (mA)

1 2.06 -16 2.10

2 1.85 -16 2.15

3 1.92 -15 2.10

4 2.00 -16 2.00

5 2.00 -23 2.30

6 2.06 -15 2.15

7 1.96 -23 1.96

8 1.81 -16 1.94

9 2.00 -15 2.45

10 2.00 -16 2.27

11 1.97 -16 2.35

12 2.03 -19 2.31

13 1.8 -16 1.96

14 2.10 -15 2.33

15 2.11 -20 2.38

16 1.85 -20 1.95

17 1.86 -20 1.78

18 1.8 -21 1.75

19 1.94 -23 2.06

20 1.9 -19 2.10

21 2.06 -17 2.46

Maximum prescaler operating frequency mean = 1.96 GHz

Standard deviation σ = 0.10 GHz
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FIGURE 5.7: Operating frequency variation with input signal levels.

FIGURE 5.8: Measured operation at 2.1 GHz, 2.1 mA prescaler current, -16dBm input
signal.

and the prescaler is according to the design, the maximum obtainable dual-modulus

operation frequency is 1.85 GHz (Figure 5.9).

• Since the operation seems limited by the RF buffer stage transistors saturating, an

experiment was done with higher supply voltage levels for the buffer alone. The

frequency of operation was found to increase by only 10 MHz when supply voltage

was increased from 2.5 V to 3 V.



60

FIGURE 5.9: Measured operation at 1.85 GHz, 1.3 mA prescaler current, -16dBm input
signal.

5.4. Conclusions

An analysis of high-performance dual-modulus prescalers has been presented in

this thesis. A design methodology was developed to implement high-speed dividers con-

suming lowest possible power. The system level issues of the pulse-swallow topology were

investigated and modifications incorporated to optimize the propagation delays. The cir-

cuit was designed keeping in mind robustness to extremes of process and temperatures.

The performance has been validated with measurements on a test chip fabricated with

National BiCMOS8 0.25µm, 5-metal technology.

Future work on this topic could involve investigating other dual-modulus archi-

tectures like those in [28] and obtain perform comparisons. The preliminary results of

this design could be used to design and fabricate the entire frequency synthesizer as that

could open up several research avenues based on the influence of the various blocks in

the mixed-signal chip.
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