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Continuous-Time Filter Design Optimized for
Reduced Die Area
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Abstract—A method for distributing capacitor and resistor area
to optimally reduce die area in a given continuous-time filter design
while maintaining the filter’s designed signal-to-noise ratio (SNR),
frequency response, and topology is discussed. To do this, a basic
linear programming algorithm is developed from derived circuit
cost and constraint functions. Among the three major filter types of
fifth-order under comparison, maximum combined capacitor and
resistor die area savings of 21% results for the Butterworth filter.
An alternative approach where the SNR is optimized for a given die
area is also presented. Maximum improvement of the fifth-order
Butterworth filter for this approach is 1.2 dB.

Index Terms—Constraint and cost functions, continous-time
filter, linear programming, maximize SNR, minimize die area,
optimization.

I. INTRODUCTION

THE reduction of die area for analog filter designs usu-
ally implies some kind of tradeoff. The most common

of these is an increase in noise. This is especially true for
switched-capacitor circuits where noise is dominated by .
This situation is also true for continuous-time (CT) filters.

In most CT filters, capacitors contribute much more to the die
area than resistors. The design of these filters is based on the
placement of poles and zeros in the -plane. These poles and
zeros are directly correlated with circuit RC time constants and
define the operation of the filter. Any changes in capacitor or re-
sistor value must be balanced by appropriate adjustment of other
components to maintain the same filter frequency response.

Because capacitor area dominates resistor area, die area
reduction requires a decrease in capacitor value, causing a
required increase in resistor value. This increase in resistor
value translates to an increase in overall noise and thereby
degrades the signal-to-noise ratio (SNR). The proposed design
method finds an optimal distribution of capacitor and resistor
area, which reduces the die area required for a filter design of a
given frequency response, filter topology, and SNR.

The proposed optimization method for minimizing capac-
itor and resistor area for a given filter design begins with the
following consideration. Higher order CT filters have several
stages, each with an associated capacitor that can be scaled in-
dependently of the other stages. This increases or decreases the
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filter noise at the output due to the required complementary
scaling of resistor values within that stage. Because each resistor
sees a different gain to the output, the change in noise may be
different for scaling different capacitors. It follows that there is
a minimum die area that can be achieved for a given SNR de-
sign requirement, and conversely, there is some distribution of a
fixed die area that maximizes SNR for a given area budget [1]. A
simple linear programming algorithm can be used to find such
an optimum without altering the filter’s frequency response or
the topology/structure.

The linear programming approach to filter optimization is
not new. One such prior art on this topic has shown enhanced
time-domain and frequency-domain filter responses in digital
filters by optimally placing pole/zero locations [2]. Other tech-
niques for optimum pole/zero placement have also been per-
formed for analog filters [3]. Some optimization techniques in-
volve state-space methods targeting reduced filter sensitivity
[4], and pre-design optimization of bandpass filters that deter-
mines the realization feasibility of a filter design for given level
of distortion and dynamic range [5]. Our linear programming
approach presented here is unique in that it preserves the filter
responses and topology (LC ladder example is used) while tar-
geting efficient integrated circuit (IC) implementation. It is pos-
sible to apply this optimization technique in addition to other
techniques, specifically [3], since our optimization process does
not change the filter transfer function. The proposed linear pro-
gramming optimization process either minimizes the die area
while keeping the SNR/noise of the filter unchanged, or maxi-
mizes the SNR (minimizing noise) while keeping the IC die area
fixed. A similar goal in the context of switched-capacitor filters
has produced closed-form expressions for minimizing total ca-
pacitance in biquads [6]. However, the results do not stem from
linear programming but from mathematical derivations of a few
specific biquads given a set of approximations.

An optimization concept for maximizing the SNR of a given
filter design was introduced in [1], which included a simpli-
fied description of capacitor area consideration using linear pro-
gramming techniques. A complete description of our optimiza-
tion algorithm will be presented here. The algorithm can target
optimization of either die area or SNR, including the area con-
tributions of both capacitors and resistors.

Sections II–V will include discussions on the derived filter
structure that is used as an example in the proposed optimiza-
tion (Section II), the development of a constant-SNR optimiza-
tion algorithm (Section III), the development of a constant-area
optimization algorithm (Section IV), the SPICE simulated re-
sults (Section V), and the conclusions.
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Fig. 1. Fifth-order filter circuit structure.

TABLE I
NORMALIZED FIFTH-ORDER FILTER COEFFICIENTS

II. FIFTH-ORDER TEST FILTER

The active filter circuit model used for each of the filters
tested was derived from a standard (doubly terminated) LC
ladder configuration. The fifth-order LC ladder was then
transformed by mathematical manipulation into an active RC
circuit made up of integrator blocks (Fig. 1). This process
is outlined in the literature [9]. Our choice of filter type and
topology/structure is somewhat arbitrary and was based on
“popularity” as most circuit designers choose the filter type and
topology based on application requirements or sometimes due
to other reasons as simple as personal preference. The proposed
design technique for reducing the die area of a CT filter will
generally apply to all integrator-based active filter structures
(e.g., standard LC ladder, various biquads, orthonormal filters
[7], etc.). The linear optimization algorithm discussed in Sec-
tion III is applied to three different filters: Bessel, Chebychev
(Type I, 0.5-dB passband ripple), and Butterworth filters. All
three filters are low pass and have a corner frequency equal
to 22 kHz. It is important to note that use of this optimization
is not limited to the design of audio or audio range filters.
The optimization is not affected by the choice of filter corner
frequency.

There is no difference in circuit structure for each of the three
filters as all can be derived from the same LC ladder configu-
ration. The only differences are the specific component values
chosen. The component values (Table I) can be found in any
of several filter books [8]–[10]. After assigning the component
values, three scaling operations must take place. The first scales

TABLE II
NODE-VOLTAGE SCALED FILTER COMPONENT VALUES

the corner frequency from unity (1 radian per second) to the de-
sired value, the second scales the components to usable values
for realization, and the third is the node-voltage scaling which
improves the dynamic range of active filters [10]. This effec-
tively scales the peak gain at each output of the operational am-
plifier in order to use its full output range. The node-voltage
scaled component values for each of the three filters are shown
in Table II. These component values are the starting values for
all filter optimizations in Sections III–V.

III. CONSTANT-SNR LINEAR OPTIMIZATION ALGORITHM

In order to use any linear programming method, such as
Karmarkar’s Algorithm [11], a set of linear cost and constraint
functions must be derived. For the optimization proposed in
this section, die area should be minimized while maintaining a
fixed SNR. In high-SNR filters, die area is dominated by the
capacitors which have area densities near 1 fF m . Resistors
can have area densities ranging from 10 m to around
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1 m . For improved accuracy over the optimization
done in [1], both capacitor and resistor area is included in the
derivation of the cost and constraint functions.

Before linear cost and constraint functions can be derived, it
is necessary to define some relationships between component
values within the circuit. There are several relationships that
must not change if the frequency response of the filter is to be
preserved. The first of these is the RC time constant associated
with each of the capacitors – (refer to Fig. 1):

(1)

The second is the ratio between resistors setting the closed loop
gains at the input of each integrator circuit:

(2)

With these two sets of equations (1) and (2), it can be seen that
all components can be written in terms of the five opamp input
resistors , , , , and .

The constraint of our linear programming algorithm is SNR.
For a fixed and defined input range, constant SNR is equivalent
to constant noise. The output referred noise power for the filter
can be expressed as

Noise (3)

where is the gain (magnitude frequency response) from
to the output.1

This is not the exact noise value, but is proportional to the
actual noise, which is in the form . Since we are only
interested in maintaining the designed noise level, this informa-
tion is sufficient. The gain is integrated over a bandwidth range,
the noise bandwidth, and is the effective targeted range of the
optimization. For many applications, the noise bandwidth would
be equal to the corner frequency of the filter.

The cost function is the equation describing the area con-
sumed by the capacitors and resistors. Written in its most basic
form

Area

(4)

The application of (1) and (2) to the constraint and cost functions
(3) and (4), replacing , , , , and with – , re-
sults in the constraint equation

Noise constraint

(5)

1Only resistors are considered here. Inclusion of opamp noise contribution
would yield more precise optimization results.

and a cost equation of

Area cost

(6)

These equations are written completely in terms of the constants
defined in (1) and (2) and the five opamp resistor inputs , ,

, , and .
Before illustrating the details of a chosen optimization

method in the following, it is important to recognize that the
given constraint and the cost equations (5) and (6) describe
the main purpose of this work. Even though we arrive at this
point with a simple set of derivations, it is the formulation of
these two constraint and cost equations that allow us to find the
optimal component values that will minimize the die area of
the filter for a given SNR (or maximize SNR for a given die
area, as discussed in Section IV).

In order to apply a linear programming method to these func-
tions, they must all be linear. The constraint function (5) is
linear, however, the cost function (6) is not. A simple solution is
to complete a first-order Taylor Expansion on the cost function.
This results in the following equation:

cost

(7)

where is the initial condition about which the Taylor Series
is expanded.



108 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 51, NO. 3, MARCH 2004

With linear constraint and cost functions derived, it is now
possible to apply a linear programming method to determine the
optimum component area distribution. A modified Karmarkar’s
Algorithm is used. It is important to note here that any optimiza-
tion scheme would result in an identical optimization given the
same constraint and cost functions. Our choice of optimization
method here is intended to provide a straightforward illustration
of the proposed concept.

The forms of the constraint and cost equations for Kar-
markar’s Algorithm are the following [11]:

constraint and cost

where

(8)

(9)

(10)

(11)

The steps for the constant-SNR (minimizing die area) algo-
rithm are as follows:

Step 1) Calculate Null-Space Projection
The direction of travel along the constant-con-

straint surface that produces the highest cost
increase is calculated via the null-space projection

. This is the surface for which the noise remains
constant in the chosen noise bandwidth.

(12)

Step 2) Update Vector Function
The calculated projection is opposite of the de-

sired direction (i.e., direction of decreasing cost), so
the algorithm must take a small step in the di-
rection.

where weight (13)

The choice of the weight can be made arbitrarily
small because our primary objective is to accurately
arrive at the optimum values. In other words, we
are not concerned with how quickly we arrive at the
solution as long as it is accurate.

Step 3) Reformulate Cost Function
The new vector is plugged into the lin-

earized cost equations and , and a new linearized
cost function results. This new cost function is used
for the next iteration of the algorithm.

Steps 1 through 3 are repeated until the algorithm converges.
The optimization generally converges after 20 iterations with a
moderately conservative choice of weight (Step 2).

IV. CONSTANT-AREA OPTIMIZATION ALGORITHM

In most filter design situations, a set area budget is less
common than a set SNR design requirement. It is, however,
interesting to measure the improvements gained by maintaining
a constant die area and maximizing SNR for a given filter
design. A simple redefinition of constraint and cost functions
and a slightly adjusted algorithm (from the one presented
in Section III) are all that is required to achieve this goal.
Equations (5) and (7) are already linear functions representing
noise and component area, respectively. For a constant-area
optimization using this method, it is necessary that the area
function be defined as the constraint (constant), and the noise
function be defined as the cost.

In this new scenario, the constraint function is now the lin-
earized function. This will require the addition of an extra step to
the algorithm of Section III. While the constant-SNR (minimize
area) optimization of Section III required Steps 1–3, this con-
stant-area (maximize SNR) optimization will require one more
step between Step 2 and Step 3. We will call this Step 2B.

Step 2B) Modify Updated Vector to Meet Constraint Surface
When the nonlinear constraint from (6) is calcu-

lated using the new vector , it will have some
offset from the desired noise level (the constraint
which ought to be fixed) due to the linearization
done on the equation used to calculate the con-
straint. A simple method to compensate for the
offset is to scale the vector back to the
constraint surface. A corrected vector is calculated
as

new (14)

where is the calculated linear offset.
The next step (Step 3) applies the new vector new to

the linearized constraint, from which a new linearized constraint
function results. These steps (Steps 1, 2, 2B, and 3) are repeated
until the algorithm converges on a minimized cost value.

The major difference between the constant-noise/SNR algo-
rithm and the constant-area algorithm is the presence of either
a linear or linearized constraint function. In the case of the con-
stant-area algorithm, once is incremented to a new location
(Step 2 of the algorithm), the vector produced is no longer on
the constant-constraint surface. The overshoot or undershoot is
then compensated for by a scaling that places the vector back on
the constant-constraint surface. In the constant-SNR algorithm,
the incremented vector does not miss the constraint surface be-
cause the constraint function is completely linear.
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Fig. 2. Noise savings: fifth-order Bessel.

V. OPTIMIZATION RESULTS

The optimization process was done to each of the three fil-
ters for a variety of noise bandwidths. For the given design of
22-kHz filter corner frequency, the optimization was applied to
the ranges dc to 22 kHz and dc to 100 kHz. Gains (squared)
from each resistor to the output were integrated in the range
for which they were to be optimized. Measurements of noise
savings (and SNR improvement) were also integrated over the
same frequency range. The capacitor density used for optimiza-
tion was 1 fF m . The optimization was completed for two
resistor densities: 1 m and 10 m .

For the m constant-SNR optimization
with a dc–22 kHz noise bandwidth, area savings was 15.01% for
the Bessel filter, 1.96% for the Chebychev filter, and 6.03% for
the Butterworth filter. SNR improvement with the constant-area
optimization was 0.71 dB for the Bessel filter, 0.09 dB for the
Chebychev filter, and 0.27 dB for the Butterworth filter. For the
dc–100 kHz noise bandwidth, the Chebychev filter had less area
improvement and less SNR improvement (3.46% and 0.15 dB),
the Bessel filter had slightly better area improvement and
slightly better SNR improvement (12.28% and 0.57 dB), and
the Butterworth filter had substantially larger improvements in
both area and SNR (21.63% and 1.06 dB).

The same optimizations with a resistor density of 10 m
showed slightly higher SNR improvements than the 1 m
optimization. These increases occur because the optimization
algorithm redistributes the extra area freed up by using higher
density resistors to the capacitors.

Noise curves for the Bessel filter with noise bandwidths at 22
and 100 kHz are shown in Fig. 2. Trends of the other two filter
types, Chebychev and Butterworth, behave similarly. Improve-
ment results of all optimizations for all three filter types and two
resistor densities are shown in Tables III and IV. Figs. 3 and 4

Fig. 3. Constant-SNR area savings trends.

Fig. 4. Constant-area SNR improvement trends.

(data from Tables III and IV) show area savings and SNR im-
provement trends versus optimization bandwidths.

Final component spread values for the constant-area opti-
mization are summarized in Table V. Generally speaking, the
total component spread remains about the same for all three op-
timized filter types. The Bessel filter type, when optimized, has
a larger resistor value spread (compared with capacitor spread),
while the Chebychev and Butterworth filter types have relatively
similar capacitor spread and resistor spread. The change of com-
ponent spread is minimal and this should not negatively affect
realizability (with regards to sensitivity) of the optimized filter.

VI. CONCLUSION

Two algorithms for improvement of filter die area usage and
SNR through linear programming have been presented. These
improvements are accomplished without decreasing SNR de-
sign requirements or increasing die area budgets. Because the
proposed method preserves the given frequency response and
the filter topology/structure, it may be applied in addition to any
other preferred optimization technique. The net improvement of
the proposed technique is reduced IC die area for a given filter
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TABLE III
CONSTANT-SNR OPTIMIZATION AREA SAVINGS

TABLE IV
CONSTANT-AREA OPTIMIZATION SNR IMPROVEMENT (DB)

TABLE V
CAPACITOR AND RESISTOR SPREAD

design and SNR. An alternative approach would yield increased
SNR for the fixed die area used. Both algorithms guarantee im-
provement for a chosen noise bandwidth. The die area savings
can be as much as 21.6% and SNR improvement as high as
1.2 dB for some filter types.

Improvements found with different frequency-band
weighting techniques such as “A-Weighting” (common in
audio applications) would be an interesting extension to this
work. A more circuit-specific extension of this work would be
to consider the operational amplifier noise, and the component
mismatches (sensitivity) in the development of constraint and
cost functions. It is anticipated that low- filters, such as But-
terworth where it benefits most from the proposed optimization,
would not be significantly affected by these mismatches. Fur-
ther areas of study related to this topic are noise optimization
in switched-capacitor filters and other circuit types.
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