Mismatch-shaping switching for two-
capacitor DAC

J. Steensgaard, U. Moon and G.C. Temes

A mismatch-shaping scheme is proposed for a two-capacitor
digital-to-analogue converter (DAC). It uses a delta-sigma loop
for finding the optimal switching sequence for each input word.
Simulations indicate that the scheme can be used for the
realisation of DACs with 16 bit linearity and SNR performance.

Introduction: A very economical digital-to-analogue converter
(DAC) containing only two capacitors, a reference voltage source
and a few switches (Fig. 1) was described by Suarez er al [1]. It
functions by charging C, to V,, or 0 depending on the incoming
bits (starting with the least significant bit (LSB), and repeatedly
sharing the charge between C; and C,. It is somewhat slow; it
requires N clock periods to convert an N bit digital word into an
analogue voltage. However, it requires only a small chip area and
little DC power, and is fully compatible with CMOS technology.
A major disadvantage of the circuit is that its linearity is limited
by the matching of the two capacitors, which (even for careful lay-
out) cannot be much better than 0.1%, corresponding to only
about 12bit linearity. Recently, several papers [2, 3] have dis-
cussed methods for eliminating or reducing this nonlinearity, by
using sophisticated algorithms for the operation of the switches so
that C, and C, can change roles in every clock cycle, and by dupli-
cating the DAC and combining the two resulting analogue out-
puts. These algorithms, however, require very complex logic and
introduce new practical problems associated with the precise addi-
tion of the analogue outputs.
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Fig. 1 Basic two-capacitor DAC topology

This Letter proposes a different approach which randomises the
DAC error caused by mismatch, and performs a highpass filtering
of the resulting noise. Thus, for oversampled operation, the
inband portion of the error spectrum is suppressed. The technique
does not require duplication of the analogue part of the DAC, and
the digital correction system needed is much simpler than those
used in the earlier schemes [2, 3].

Proposed system: The block diagram of the proposed system is
shown in Fig. 2. In the upper part of the Figure, x(n, k) denotes
the kth bit of the nth input word x(n), y(n) is the corresponding
analogue output sample, ¥V, €(r) is the error in y(n), and #(n, k) =
+1 controls the choice of C, or C, when x(n, k) is converted. In the
lower part, €(n) = 0 is the desired average value of e(n), €¥(n) is
the output of the digital lowpass filter H(z), #(n) is the nth word
containing the signs #, k), and € () 13 the computed value of the
error €(n) in y(n). The P/S blocks perform parallel-to-serial conver-
sion, and the T blocks truncate the data. The digital delays needed
for timing are ignored for simplicity in Fig. 2.
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Fig. 2 Proposed mismatch-shaping system

Clearly, the lower part is a delta-sigma loop which attempts to
keep the average value of €(n) equal to en) = 0 over a large
range of n values. More specifically, the loop forces the z-trans-

form E(z) of the computed error &(n) to satisfy E(z) =~ E[z) +
Q(z)/H(z), where Q(z) is the z-transform of g(1n) = € (n) — €*(n), i.c.
the quantisation introduced by the sign selector (SS) and error
estimator (EE) blocks. Since the input signal is €{n) = 0, at low
frequencies the error energy can be made very low by using a
high-gain/high-order H(z) and by making the SS and EE blocks as
accurate as possible.

The SS block is a crucial component of the loop. Its role is to
generate a #(n) vector (composed of N elements *1) such that the
computed error €(n) is as close to €*(n) as the given conditions
allow. Specifically, for a relative mismatch between C; and C,
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it can be shown that the error, to a first-order approximation, is

e(n) ~ gé(n)

N k-1

t(n, k) [Qk"NI(n, k) = 2 Na(n,j)
k=1 L =1
@)

This expression, even though different in appearance, is equivalent
to that found in [3].

The task of the SS block is to choose the signs #(, k) on the
basis of eqn. 2 such that, for given x(n) and e€*(n), the difference
[€n) — €*(n)] is minimised. Since this is affected mainly by the first
few most significant bits (MSBs) of the words x(n), €e*(n), and #(n),
both inputs to the SS block can be truncated to (say) 4 bit, and the
LSBs of #(n) may be fixed to one value. Hence, the SS block can
be realised as a small (4x4x4bit) ROM which outputs the near-
optimum N bit sign vector #r). The signs #(n, k) are then provided
to the DAC to control the switching sequence, and to the EE
block which derives € (1) using eqn. 2.
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Fig. 3 Optimum transfer characteristics for sign selector (SS) and error
estimator (EE) blocks

Under ideal conditions, the cascade of the SS and EE blocks
should have a linear unity gain, i.e. €(n) = €*(n). This would yield
zero DAC error at all frequencies, but unfortunately this is impos-
sible to achieve. Fig. 3 shows the transfer characteristics obtained
by choosing the optimum #(n) for each of the 16 possible 4 bit
truncated x(n) inputs. Clearly, some inputs (0101, 1010) allow
nearly perfect transfer characteristics, while others (0000, 1111) do
not.

Note that the scheme of Fig. 2 can be used to shape the error of
any physical system which has only a single error source (cf.  in
eqn. 1), and where the formula for the output error is known (cf.
eqn. 2). Note also that the principle of the scheme is somewhat
similar to that of the mismatch-shaping technique proposed by
Schreier for high-linearity multibit flash DACs [4]. However, [4]
discusses systems with multiple errors &, 8, ... and hence multiple
control loops, and each control loop employs a quantiser which is
both highly nonlinear and time-variant. Also, Hernandez
described a scheme [5] in which the switching sequence in a mis-
match-shaped multi-stage DAC was controlled by digital delta-
sigma loops.

This Letter did not address several important aspects of the
proposed system, such as assuring its stability and preventing idle
tones in y(n). This will be discussed in a full-length paper currently
being prepared for publication.
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Fig. 4 DAC output spectra without and with mismatch shaping

a Without mismatch shaping
b With mismatch shaping

Simulation results: The operation of the system in Fig. 2 was sim-
ulated under the following conditions: relative matching accuracy
5= 0.1%, H(z) = 1/z-1 + 0.5z/(z—1) + 0.252/(z—1), N = 16, and
the words €*(n) and x(n) were truncated to 4 bit when entered into
the SS. The sinusoidal input signal had a peak-to-peak amplitude
0.707 V,,, and a frequency 32 times lower than the Nyquist rate.
Fig. 4 compares the output spectra obtained with and without the
proposed correction scheme. Without compensation, the harmonics
are dominant, and the total harmonic distortion is only ~ ~70dB.
With compensation, there are no observable harmonic spurs, and
the third-order noise shaping is evident. For an oversampling ratio
(OSR) of 10, the inband-noise-to-signal ratio of the corrected sys-
tem is around —96dB, corresponding to a 16 bit performance.
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Symmetry conditions of Boolean functions
in complex Hadamard transform

S. Rahardja and B.J. Falkowski

A method to identify symmetries in Boolean functions using a
complex Hadamard transform is proposed. It is shown that only
the half spectrum is needed to detect symmetries in Boolean
functions.

Introduction: Two spectral approaches, based on either the Reed-
Muller or the Hadamard-Walsh transform, have been applied to
the identification of Boolean symmetries [3]. Both of these spectral

approaches used the arithmetic manipulation of subsets of spectral
coefficients. In this Letter, the conditions for Boolean symmetries
are given for complex Hadamard transforms that are based on the
complex Boolean spectra and do not require any manipulation.
The analysis is limited to all possible symmetries of degree 2 for
any n-variable Boolean function, and the symbols used for differ-
ent types of symmetries follow the notation from [3].

Property 1: If the basis transform matrix of the complex Had-
amard transform is
1 4
e=[2 ]

then the elements of the matrix are related by
Can—1-j)k =1 "Gk 1)

where 27 defines the order of the complex Hadamard matrix, y = n
mod 4.

Definition 1: Let f{ %) be a Boolean function of » variables, with
X = {x, X1y ooy X1}, X, € {0, L}, 1 € u £ n. The truth vector 7
can be mapped to an M-coded F with encoding [0’ — 1 + i] and
[1—>-1-1.

Theorem 1: Let the encoded truth vector F = or s oo Jo ony S
J* have complex Hadamard spectra of M= [y, my, ..., My, .,
myJT. Then,

— .
Magn _1_; = T7; €Xp [(1 - 7)51] 2)
where ¥ = n mod 4.
Proof: Let f, = f,, (1 + i) and 0 < k < 2n-1 where f, € {+1, -1}
represents the S-coded minterms of the Boolean function [3]. By
definition 1, each of the elements in A is expressed as m, = £ 2!

cife = T2 ¢f, (1+0), where the complex Hadamard matrix C' =
{cx = oy + iBy} and 0 < j < 2-1. Then,

2m 1

my = > fallag = Ba) + il + Bl
k=0
2" ~1 2" —1

S feloge = Bin) +1 Y foulage + Bix)
k=0 k=0

and, from property 1,
271 2"l

man—1-5 =i | Y feu (gt Bir) T4 ol +Bin) |
k=0 £=0
By separating summation terms, eqn. 2 is proved.

Definition 2: The reverse operator R on either row vector or col-
umn vector is defined as reversing the positions of all its elements.
For example, if F is as defined in definition 1, then R(F) = [finy,
fz”-Zs --->f6]r'

Property 2: From theorem 1 and definition 2,

E(W) = exp[(1 — ) 5] M 3)

2

and

@(W) = exp [(1 - ”y)gi] J\Fg (4)

where the conjugate operation on a column vector is defined as
converting every element in the column vector to its complex con-
Jjugate equivalence. The proof of property 2 is immediate from the-
orem 1.

Theorem 2: Let an n-variable Boolean function f(ﬁ ) possess sym-
metries of degree 2 in E{x,, x,}. Then, the complex spectral test
for this symmetry is

MO = R exp[(1 =) 7] M 5)
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