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Abstract— A new architecture of a fractional-N phase-locked
loop (PLL) frequency synthesizer is presented in this paper.
The unique feature of the proposed frequency synthesizer is
a loop filter with a discrete time comb filter which allows for
the efficient suppression of fractional spurs. The proposed loop
filter architecture can be efficiently implemented using switched
capacitor techniques. The benefits of this approach are a low
power frequency synthesizer design with low spur levels. An
analysis of the fractional spurs in the fractional-N frequency
synthesizers is also presented.

I. INTRODUCTION

Fractional-N type of PLL’s are commonly used in frequency
synthesizers. A fractional-N PLL has benefits compared with
classical integer-N implementations. Better phase noise perfor-
mance, faster lock, and better spur levels can be obtained with
fractional-N PLLs. The advantages of fractional-N PLLs come
from a larger loop bandwidth which implies better voltage
controlled oscillator (VCO) phase noise suppression and faster
lock time, and from higher phase-frequency detector (PFD)
update frequencies. However, fractional-N implementations
have pitfalls as well, which are the fractional spurs and cycle
slipping.

Fractional spurs can be eliminated by removing the deter-
ministic nature of switching among different division ratios.
This is commonly done by introducing delta-sigma control
in the feedback divider [1]. In this case, fractional spurs are
spread over the spectrum and become quantization noise which
is shaped by the delta-sigma modulator to high frequencies.
High frequency noise is filtered by the low pass characteristics
of the loop filter. In order to obtain efficient filtering of the
high pass shaped noise, the order of the loop filter must be
equal to the order of the delta-sigma modulator plus one. This
approach is efficient but might not lead to complete elimination
of spurs, since a delta-sigma modulator can generate spurs by
itself due to idle tones. To reduce idle tones, pseudorandom
sequences can be mixed with the delta-sigma modulator input.

Thus the delta-sigma approach incorporates additional hard-
ware for an all-digital delta-sigma modulator, pseudorandom
sequence generator, and more complex loop filter. More hard-
ware will lead to a higher power consumption, larger chip area
and, in the case of additional digital blocks, to more switching
noise which can be coupled through the common substrate and
supply to analog blocks and degrade their performance [2].

Another way to suppress fractional spurs is to reduce the
bandwidth of the PLL, but this results in a degradation of the
noise performance and an increased of the lock time.

The approach proposed in this paper is an extension of
the conventional fractional-N technique and incorporates a
discrete-time loop filter with notches at spur frequencies.
Notch frequencies can be programmable and depend on the
fractional spurs. The benefits of this approach are a low power
frequency synthesizer design with low spur levels. Also in our
approach, the bandwidth of the PLL can be kept as large as
permitted by the stability criteria.

II. FRACTIONAL SPURS

Fractional-N frequency synthesizers generate spurs at the
output of VCO. The nature of the spurs depends on a pro-
grammable feedback divider which can switch between two
different integer division ratios in order to get a fractional one
[3]. Assume a feedback divider can divide by N or N +1, the
division modulus is M , and the reference frequency is fref .
If a division by N +1 is chosen K times and a division by N
is chosen M − K times, the fractional division ratio Nf will
be given by:

Nf =
K · (N + 1) + (M − K) · N

M
= N +

K

M
(1)

It is clear that the frequency resolution is fref/M and the
first harmonic frequency at the PLL control line is fref ·K/M .
The control voltage harmonic content affects the VCO output
voltage spectrum. In order to understand which harmonics at
the control line are needed to be blocked, an analysis should be
performed to determine how severely they affect the spectrum
of a VCO.

Assume that the VCO control voltage is given by Eq. (2)
which is a truncated Fourier series expansion:

Vctrl(t) = V0 + V1 cos(ωst + ϕ1) + V2 cos(2ωst + ϕ2) (2)

where ωs = 2πfs;
fs - frequency of a spur;
Vi - amplitude of the i-th harmonic;
ϕi - phase of the i-th harmonic, which can be neglected for
simplifying the derivations.

The output voltage of the VCO is given by:

VV CO(t) = VA cos(ω0t + Φ(t)) (3)

where ω0 = 2πf0;
f0 - frequency of the free running oscillator;
VA - amplitude of oscillation;
Φ(t) - phase of the oscillator.
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The phase of the oscillator can be calculated using Eq. (4)

Φ(t) = 2πKV CO

∫ t

−∞
Vctrl(t)dt

= 2πKV CO(V0 +
V1

ωs
sin(ωst)

+
V2

2ωs
sin(ωst)) (4)

Define:

α1 = 2πKV CO
V1

ωs
= V1

KV CO

fs

α2 = 2πKV CO
V2

2ωs
= V2

KV CO

2fs
(5)

Using the above definitions, the output voltage of the voltage
controlled oscillator can be written as:

VV CO(t) = VA cos(2π(f0 + KV COV0)t
+α1 sin(ωst) + α2 sin(2ωst))

= VA cos(ωct + α1 sin(ωst)
+α2 sin(2ωst)) (6)

where ωc = 2πfc = 2π(f0 + KV COV0).
VV CO(t) can be represented as:

VV CO(t) = VA�{ejωctejα1 sin(ωst)ejα2 sin(2ωst)}

= VA�{ejωct
∞∑

n=−∞
Jn(α1)ejnωst

·
∞∑

m=−∞
Jm(α2)ejm2ωst}

= VA

∞∑
n=−∞

∞∑
m=−∞

Jn(α1)Jm(α2)

· cos(ωct + nωst + m2ωst)

= VA

∞∑
n=−∞

∞∑
m=−∞

Jn(α1)Jm(α2)

· cos(ωct + (n + 2m)ωst) (7)

where Ji(·) is the i-th order Bessel function of the first kind
(Figure 1).

The magnitude of each spur harmonic in the output voltage
of a VCO can be determined from Eq. (7) simply by com-
bining coefficients near a desired frequency. Define k as the
number of the desired spur harmonic, then k = n + 2m, and
n = k− 2m. The magnitude of the k-th spur harmonic Vsk is
defined by Eq. (8):

Vsk =
∞∑

m=−∞
Jk−m(α1)Jm(α2) (8)

Form Eqs. (7) and (8) it can be concluded that:

• each harmonic at the control line of a VCO will generate
an infinite number of spurs at multiple frequencies around
the carrier frequency of the VCO;
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Fig. 1. Bessel functions of the first kind.

• the magnitude of a spur depends on the arguments of the
Bessel functions (or modulation index), and thus depends
on the KV CO and the magnitude and the frequency of a
harmonic at the control line;

Therefore, a low KV CO should be used and the fractional
spurs should be moved to a higher frequency.

III. BLOCKING OF THE FRACTIONAL SPURS

The previous analysis shows that a number of harmonics at
the control line have to be blocked in order to eliminate spurs
at the VCO output. The blocking can be done by introducing
notches at the spur frequencies on the PLL control line.

A conventional fractional-N PLL is shown in the Figure 2.
The phase-frequency detector (PFD) together with the charge
pump (CP) is basically a discrete-time block with sampling
frequency equal to the PLL update rate. The phase error
information is present in current pulses injected from the CP
into the low pass filter (LPF). Since the absolute value of the
CP current has to remain constant, the phase error information
is stored in the width of the current pulses or in the amount of
charge injected into the LPF. The key idea of the proposed spur
blocking technique is to introduce switched capacitor discrete-
time comb filters (DTF) to process charge injected from the
CP before it reaches the LPF (Figure 3). Operating at the
frequency of the PLL update rate, the comb filter places zeros
at the frequency of the fractional spurs and thus filters them
out.

PFD
CP

Vin

÷N/N+1

Division
control

LPF
Vout

Fig. 2. Conventional fractional-N PLL.
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Fig. 3. PLL architecture with a discrete-time comb filter.

Generally, PLL analysis in the z-domain is more accurate
because of the sampling nature of the PLL system. The z-
domain analysis takes into account such effects as the discrete
time phase-frequency comparison in the PFD, the folding and
the delay through the loop [4], [5].

The two PLLs from Figures 2 and 3, a conventional PLL,
and one with a discrete-time comb filter, have been modeled in
Matlab. The PLLs have a reference frequency of fref =40MHz
and bandwidth equal to 4MHz. For an output with 10MHz
steps, the feedback divider should have the modulus M equal
to 4. The frequency of the spurs depend on the feedback
division ratio and the lowest possible frequency is given by
fref/M and is equal to 10MHz in our case. Thus the comb
filter transfer function should have 4 zeros around the unit
circle with a 10MHz spacing and is given by:

DTF (z) = 1 − z−M (9)

where M = 4 is the modulus of the fractional-N PLL.
It can be seen that the DTF is a linear phase FIR filter and

thus causes 180 degree phase degradation from DC to the first
notch (first zero) [6]. To maintain stability of the system, the
phase needs to be corrected. To correct the phase, a left half
plane (LHP) real value zero-pole pair can be used as a phase
correction filter (PCF) as in Eq. (10)

PCF (z) =
1 − 0.9z−1

1 − 0.5z−1
(10)

The complete z-domain block diagram of the proposed PLL
is presented in Figure 4.

÷N/N+1

Division
control

1-z-1

PFD/CP VCOPCFDTF
Vin Vout

1-0.9z-1

1-0.5z-1

KVCOTS

1-z-1
z-1ICP

2pi

Fig. 4. z-domain block diagram of the PLL with a discrete-time comb filter.

Figure 5 shows the frequency responses of the open loop
PLL. The solid line represents the s-domain model for the

conventional PLL and the dashed line represents the z-domain
model for the same PLL. Since the bandwidth of the PLL is
only ten times less than its reference frequency, a difference
between the s-domain and the z-domain models can be clearly
seen. The dotted line shows the frequency response of the PLL
with a discrete time comb filter, which has been designed for
the same specifications as the conventional PLL.
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Fig. 5. Loop gain of the PLL.

To prove the robustness of the proposed technique, both
PLLs have been simulated in Simulink. For the simulation, the
output frequency is chosen to be 1.02GHz, thus the division
ratio should be 25.5. In this case, the control voltage spectrum
will contain harmonics of fs = fref/2.

Figure 6 shows the voltage spectrum on the control line of
a conventional PLL. As can be seen, the control voltage has
several harmonics that cause spurs at the VCO output (Figures
7 and 8).
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Fig. 6. Control voltage spectrum of the conventional PLL.

Figure 9 shows the voltage spectrum on the control line of
a PLL with the DTF. As can be seen, the control voltage is free
of harmonics and the VCO output spurs have been eliminated
(Figures 10 and 11).
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Fig. 7. VCO output spectrum of the conventional PLL.
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Fig. 8. VCO output spectrum of the conventional PLL (zoomed).
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Fig. 9. Control voltage spectrum of the PLL with DTF.

IV. CONCLUSIONS

A new approach to the design of fractional-N frequency
synthesizers with low fractional spurs is proposed. The key
idea is to remove fractional spurs using a discrete-time comb
filter, which can be implemented using switched capacitor
techniques. Simulation results show that the use of a comb
filter creates notches at the harmonic frequencies and elim-
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Fig. 10. VCO output spectrum of the PLL with DTF.
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Fig. 11. VCO output spectrum of the PLL with DTF (zoomed).

inates spurs from the VCO output spectrum. The limitation
of this approach is that it cannot be used if the spurs occur
inside the PLL bandwidth. Also if the spurs are close to the
PLL bandwidth, an additional zero might be needed to correct
the phase and maintain the required phase margin.
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