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Fig. 1.  Simplified “Capacitor flip-around” switched capacitor circuit 
commonly used as a pipeline ADC MDAC. 
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Abstract— The goal of this paper is to provide an intuitive 

approach to switch sizing in SC circuits, focusing primarily on 

the MDAC of a pipelined ADC. Theory and simulation show 

that properly choosing the switch resistances to create a 

critically damped system can reduce the settling time of the 
circuit. 

I. INTRODUCTION

In the past decade, pipelining has become a dominant 

method for achieving mid-accuracy, mid-speed analog to 

digital converters, catering to applications like high-

performance communication and video systems. The critical 

component of these converters is the first stage multiplying 

digital to analog converter (MDAC) that performs sampling, 

amplifying, and subtracting, typically in a single switch 

capacitor circuit. The performance of this block usually 

limits both the accuracy and maximum operating speed of 

the entire ADC. 

A single ended version of the common “capacitor flip-

over” implementation of a 1.5-b MDAC is shown in Fig. 1 

[1]. During the first clock phase, the signal is sampled onto 

the sampling capacitors CS and CF. In the second phase, 

called the amplifying phase, CF is switched into feedback 

around the amplifier and the bottom plate of CS is connect to 

a voltage reference level, causing a charge redistribution 

that results in a signal amplification and subtraction by the 

voltage reference. 

Unaddressed in most publications is the issue of sizing 

the CMOS transistors that perform the switching operations. 

There is a tradeoff between small sizes that can have switch 

resistances too large to allow proper settling of the MDAC, 

and large sizes that suffer from undesirable channel charge 

injection and clock feed-through due to parasitic 

capacitances. Designs aim to use the minimum sizes that do 

not adversely degrade the settling. 

Traditional switch design involves matching all RC 

networks to a time constant approximately 3 to 4 times 

faster than the open-loop unity gain bandwidth of the 

network but ultimately relies on simulation to verify proper 

settling due to the complexity of the system. 

This paper aims to build intuition and provide insight into 

the effect of adding switch resistances as it relates to the 

step response and the pole/zero locations of the closed loop 

transfer function. Section II reviews damping of the ideal 

closed loop system for minimum settling time. Section III 

covers the effect of resistances in the sampling, feedback, 

and load branches of the MDAC during the amplify phase 

individually as well as together. Section IV gives simulation 

results using transistor level OpAmps, and Section V has 

concluding remarks. 

II. DAMPING OF IDEAL MDAC 

A. OpAmp Model 

For many higher speed pipeline ADCs reported, single 

stage amplifiers are used, many with gain boosting [2],[3]. 

Therefore, the OpAmp model in this analysis is a gm stage 

with an additional parasitic pole, expressed as (1). A large 

resistance at the model output determines the OpAmp gain. 

 (1) 

B. Second Order MDAC Approximation 

The open-loop transfer function of the inverting amplifier 
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configuration gives the designer an estimate of the settling 

behavior of the step response, but knowing the pole/zero 

locations of the closed-loop system translates to the exact 

step response of the system. 

The transfer function of the circuit shown in Fig. 2 is a 

second order system. By re-expressing the location of the 

OpAmp parasitic pole as a multiple of the loop unity gain 

bandwidth (2), the transfer function can be approximated as 

(4) with closed loop poles located at (6), natural frequency 

of (7), and damping factor of (8). The expression for the 

dominant pole approximated loop unity gain bandwidth ( u)

of this circuit is (3). Finding the zero locations involves 

factoring F(s) (5).  

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Depending on the relative spacing between the open loop 

poles, the closed loop system can be over- or under-damped, 

causing a slower transient or ringing respectively. Though a 

more precise settling optimization exists [4], a near optimal 

goal is critical damping for minimum settling time without 

overshoot. This occurs when the frequency of the parasitic 

OpAmp pole is 4 times greater than u, corresponding to a 

76 degree loop phase margin. In this case, the presence of 

the parasitic OpAmp pole reduces the settling time by 33% 

compared to a system without the parasitic pole. This is 

because the critically damped pole pair appears at twice the 

frequency of the loop unity gain bandwidth. 

The pole/zero diagram for an under-damped example is 

shown in Fig. 3. The right half plane (RHP) zero causes an 

initial dip in the step response and is undesirable, while the 

LHP zero has a high enough frequency to have little effect. 

Attaining a minimum settling time through critical 

damping is now extended to the cases where the feedback, 

sampling, and load branches also contain switch resistances. 

III. EFFECT OF SWITCH RESISTANCES

Mathematically analyzing the response with added 

resistances is cumbersome. Instead, the pole/zero behavior 

is observed and compared to the no-resistance case. 

From one amplify phase of the MDAC to the next, all 

switch resistances remain approximately constant except for 

the switches at the output of the OpAmp. For this analysis, 

all resistances are approximated as constants. A model 

MDAC in the amplifying phase with included switch 

resistances is shown in Fig. 4. 

A. Sampling Switch Resistance, Rs

Adding a resistance in series with CS dampens the system 

further and adds an additional pole without moving the 

zeros, as shown in Fig. 5(a).  

CF

C
S

CL

V
IN

VO

Fig. 2.  Inverting amplifier configuration of MDAC amplify phase. 
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Fig. 3.  (a) Pole/zero diagram of an under-damped, second order, inverting 

amplifier transfer function. (b) Corresponding step response 
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A unique case for adding sampling resistance to a 

critically damped system with equal capacitances (CS = CF =

CL) exists when the sampling branch time constant follows 

S=RSCS=1/3 u. In this case, the dominant pole returns to 

u, while the 2nd and 3rd poles converge on the LHP zero 

located at 6 u. In this example, the presence of RF negates 

the effect of the OpAmp parasitic pole. Adding more 

resistance decreases the dominant pole frequency and 

creates a 2nd and 3rd pole doublet.  

For an under-damped system with 60 degrees loop phase 

margin ( 2=1.7 u), adding a resistance to achieve 

S=1/0.6 u reduces the required settling time by 

approximately 25% for 10-bit accuracy. Applying S=1/ u

to a 45 degrees phase margin nearly halves the settling time 

compared to the case with no resistance. 

B. Feedback Switch Resistance, Rf

When resistance is added in series with CF in the 

critically damped system, it becomes under-damped. This 

also moves the RHP zero to a higher frequency, the LHP 

zero closer to the doublet, and introduces 3rd pole, as shown 

in Fig. 5(b). In most under-damped systems, adding any 

resistance of this kind decreases the speed of the circuit. 

For the equal capacitance case, adding resistance as close 

as F =1/2 u to a critically damped system does not degrade 

the settling but adds a slight, 2% overshoot. 

On the other hand, adding additional RF to an over-

damped system can increase the speed. In the rare case of a 

single pole system where 2 is non-existent, adding this 

resistance can be used to achieve up to near 50% reduction 

in settling time due to damping caused by the incoming pole 

and LHP zero. 

C. Load Switch Resistance, RL

A resistance in series with CL changes the OpAmp output 

response similar to the sampling resistance, but also adds a 

zero. Though, when the response is calculated as the voltage 

across the load capacitor, the load RC pole cancels the 

added zero, as in Fig 5(c). 

D. Corner Cases of Full System  

Trends are difficult to identify while analyzing the system 

with the resistances included in every branche, but a few 

corner cases exist that reduce the complexity, assuming the 

capacitances are all equal. 

1) S = F = L = 1/ 2= 1/4 u: In the case that all time 

constants are configured at 4 times the loop unity gain 

bandwidth, the system reduces to 2 poles located at u and 

4 u respectively. Cancellation of the other poles/zeros also 

occurs at 4 u. Increasing F to 3/4 u reduces the settling 

time by 35% by reestablishing the critical damping and by 

moving the RHP zero.  

2) S = F = L = 1/ 2= 1/2 u: When all time constants 

are configured at 2 u, the system again reduces to 2 poles, 

located at u and 2 u. This case suffers a 10% increase in 

settling time for 10-bit accuracy compared to a system with 

a single pole at u. Adding additional RF shows little to no 

improvement in settling time, but reducing RF actually 

decreases speed, suggesting that matching the resistor time 

constants is important. 

In the second case, having 63 degree phase margin 

without resistances, matching all resistance time constants 

instead to 1/3 u shows best performance, improving the 

settling time by over 25% compared to having no resistors. 

Therefore, adding resistors to an under-damped system can 

sometimes increase the speed because adding resistance to 

all branches in equal time constants often has an overall 

damping effect. 
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Fig. 4. Resistances are added to the inverting amplifier configuration to 

model the CMOS switches in the MDAC. 
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Fig. 5.  Pole/zero diagrams showing the effect of adding series resistance to a 

critically damped inverting amplifier configuration in the a) sampling branch 

b) feedback branch c) load branch. 
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E. Changing the Feedback Factor 

An MDAC that multiplies by more than a factor of 2 has 

decreased feedback factor ( ) with CS larger than CF. Using 

a general capacitor scaling principle in this analysis of 

scaling the capacitors in each stage by the MDAC 

multiplying factor [5], CL remains equal to CF while CS is 

varied to observe the effect of lower feedback factors. The 

gain of the OpAmp is also increased in this case to maintain 

the same bandwidth and phase margin. 

1) =1/4, S = F = L =1/ 2=1/4 u: A simplification 

through pole/zero cancellation once again, the two poles are 

located at 1.27 u and 3.16 u. This is similar to the case with 

equal capacitances but closer to critical damping with 

pole/zero cancellation occurring at an even higher 

frequency. Increasing F to 3/4 u for critical damping 

reduces the settling time by approximately 25%. 

2) =1/8, S = F = L = 1/ 2= 1/4 u: Here, the two poles 

occur at 1.45 u and 2.74 u, even closer to critical damping 

than for =1/4. Increasing F to 3/4 u for critical damping 

reduces the settling time by around 14%. 

Adding resistances to all branches in equal time constant 

amounts tends toward over-damping of the system, but 

configurations with smaller feedback factors experience less 

of the damping effect. 

IV. SIMULATION

Analysis thus far is done with MATLAB and verified 

with models in a circuit simulator. Simulations with two 

different, transistor level, fully differential amplifiers are 

now presented. A 20mV differential step is applied to CS

and the linear settling of the output is observed across CL.

With CS = CF = CL = 1 pF and negligible OpAmp input 

capacitance, the gain-boosted, folded cascode OpAmp 

achieves a loop gain of 61 dB, a loop unity gain bandwidth 

of 150 MHz, and a phase margin of 85 degrees. In a closed 

loop configuration, this is an over-damped system that 

should settle to 10-bit accuracy in about 6.65 ns. 

Fig. 6 shows the step response of the closed loop system 

(a) without resistances, (b) with resistances satisfying 

S= F= L=1/4 u, and (c) with additional feedback resistance 

such that F=3.4/4 u.

Adding the resistances increases the 10-bit settling time 

from 6.5ns to 8.2ns, but providing the additional feedback 

resistance establishes critical damping of the system and 

lessens the initial dip by moving the RHP zero, changing the 

settling time to 4.5ns, a 45% time reduction. 

Another example uses a folded, triple cascode amplifier 

with 100 fF input capacitance, CS = CF = CL = 300 fF, 61 dB 

loop gain, 200 MHz loop unity gain bandwidth, and 70 

degrees phase margin. 

Simulation settling times for given resistances in this 

example are shown in Table 1. Note that in each of the cases 

with resistances, critically damping the signal involves 

increasing the feedback resistance such that F = 1.5 S which 

reduces the settling time by about 25%. 

V. CONCLUSION

An intuitive description is provided for the effect of 

CMOS switch resistances on a typical pipelined ADC 

MDAC, as well as a demonstration of the necessity for 

proper switch sizing. In two example cases with transistor 

level OpAmp models, modifying the feedback resistance 

decreased the setting time by 45% and 25% respectively. 
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TABLE I

STEP RESPONSE SETTLING TIMES

S, L F Settling Time (ns) 

0 0 3.6 

1/4 u 1/4 u 4.2

1/4 u 1/2.67 u 3.2 

1/3 u 1/3 u 4.77 

1/3 u 1/2 u 3.74 

1/2 u 1/2 u 5.8 

1/2 u 1/1.33 u 4.25 

Step response times for 10-bit settling of an inverting amplifier 

configuration in terms of the branch RC constants and the loop bandwidth. 

(c)

(b)
(a)

Fig. 6.  Step response of the closed loop system with a) no resistance, b)

with resistances that create equal time constants, 4 times faster than the
loop unity gain bandwidth, c) additional resistance in the feedback path. 
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