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Abstract—In this paper a modification of the time-domain
periodic steady-state analysis for oscillators is presented. The
proposed analysis finds the value of a circuit parameter that
results in the circuit oscillating at a desired frequency. This
analysis is based on the steady-state analysis for voltage and
current controlled oscillators, i.e., replacing the oscillation period
by a circuit parameter in the list of unknowns. A generalized
formulation that can handle a control voltage or current, as
well as any frequency-tuning circuit parameter, such as a tank
capacitor or device geometry is developed in this paper.

I. INTRODUCTION

Oscillators are commonly used in digital systems for clock
generation, and in radio-frequency communication front-ends
for up- and down-conversion. System specifications include
clock frequency for digital systems, and channel frequency
bands for radio-frequency systems. In these applications, the
oscillator fundamental frequency f0 is specified during the
design phase. However, the conventional periodic steady-state
(PSS) analysis [2], [3] treats the oscillation period T = 1/f0

as an unknown.
Consider the problem of finding the control voltage for

a voltage-controlled oscillator (VCO) such that the circuit
oscillates at the specified frequency. Most existing analysis
tools can offer only a brute-force search-based approach,
which requires running conventional PSS analyses at a number
of control voltage values. A more efficient and elegant solution
to this problem is the PSS analysis for voltage and current con-
trolled oscillators [1]. This method treats the control voltage
or current as an unknown, while the oscillation frequency is
specified as a parameter.
However, the control voltage is not an appropriate

frequency-tuning circuit parameter for use in the design phase.
In the operation of a phase-locked loop (PLL), the VCO
frequency is adjusted by the control voltage in closed-loop,
and the range of the control voltage is determined by the
charge pump design [7]. Therefore, in designing an open-
loop VCO, the control voltage should not be used as the
frequency-tuning parameter, as this affects the tuning range.
Instead, the tank capacitor or the delay stage device size can be
used as a frequency-tuning parameter in LC or ring oscillators,
respectively. In crystal oscillators, the tuning capacitor should
be changed to adjust the frequency.
The formulation described in [1] works specifically with a

control voltage or current as the frequency tuning parameter.
In this paper, a generalized formulation of the PSS analysis

for oscillators is presented. We call it PSS analysis with a
specified oscillation frequency. Our formulation is capable of
working with a control voltage or current, as well as any circuit
parameter that affects the oscillation frequency.
In Section II we review the concept of the steady-state

analysis with a specified frequency. A general mathematical
description for oscillators is provided. Based on this descrip-
tion the difference between the conventional and proposed PSS
analyses in terms of the problem formulation and performance
is explained. In Section III a discrete-time oscillator represen-
tation suitable for computer simulation [4] is presented. Based
on this model a finite difference method for PSS analysis with
a specified frequency is presented. In Section IV, simulation
results for LC and ring oscillator circuits are given. It is shown
that the results obtained by the proposed PSS analysis are
consistent with the results of a conventional PSS analysis.
Finally, the paper is concluded in Section V.

II. THEORETICAL FORMULATION

In this section the concept of oscillator PSS analysis with
a specified oscillation frequency is reviewed. The proposed
PSS formulation is compared to the conventional one, based
on a general continuous-time mathematical representation for
oscillators.

A. Continuous-Time Oscillator Equations

Any nonlinear oscillator circuit can be modeled as a set of
m differential-algebraic equations (DAEs) given by

q̇
(
x(t), γf0

)
+ f

(
x(t), γf0

)
+ b(γf0) = 0 (1)

where

t ∈ R : time, independent variable,

γf0 ∈ R : oscillator circuit parameter,

x : R → R
m : oscillator state variables,

q : R
m × R → R

m : contribution of reactive components,

f : R
m × R → R

m : contribution of resistive components,

b : R → R
m : independent sources.

The T -periodic solution x(t) of DAEs in (1) is called the
PSS solution and satisfies x(t) = x(t + T ). This periodicity
constraint can be expressed as

x(0) = x(T ) (2)

10731-4244-0921-7/07 $25.00 © 2007 IEEE.



Note that if x(t) is a PSS solution, then x(t + ∆t), ∀∆t is
also a valid PSS solution. A unique isolated solution can be
selected by imposing a phase condition

ϕ
(
x(0)

)
= 0, ϕ : R

m → R (3)

One possible phase condition is to let a component of x(0)
be a fixed value.
The oscillator PSS is uniquely defined by the system

of (1), (2), and (3), resulting in the continuous-time equations
for the oscillator in the steady-state⎧⎨

⎩
q̇
(
x(t), γf0

)
+ f

(
x(t), γf0

)
+ b(γf0) = 0

x(0) = x(T )
ϕ
(
x(0)

)
= 0

(4)

This is a periodic boundary value problem (BVP), a special
case of a two-point BVP [5].

B. PSS Analysis: Conventional vs Specified Frequency

A conventional PSS analysis computes the periodic wave-
form x(t) and the oscillation period T , for a given
parameter γf0

γf0 → Eq. (4) → {
x(t), T

}
(5)

Here, the period T is one of the unknowns, and the circuit
parameter γf0 is a parameter of the oscillator equations.
The idea behind the proposed PSS analysis is to swap

the role of T for the role of γf0 , i.e., to introduce γf0 as
an unknown, and treat the period T as a known parameter.
The objective of the PSS analysis with a specified oscillation
frequency is to find the value of the circuit parameter γ f0 , and
the periodic waveform x(t) for a given oscillation period T

T → Eq. (4) → {
x(t), γf0

}
(6)

The computational cost of the PSS analysis with a specified
frequency is comparable to that of the conventional PSS ana-
lysis. However, solving the problem in (6) is computationally
more efficient than using the conventional analysis methods.
The brute force approach to the problem in (6) is to alter
γf0 (manually or automatically), while monitoring T with a
conventional PSS analysis

γ(0)

f0
→ Eq. (4) → {

x(t)(0), T (0)
}

γ(1)

f0
→ Eq. (4) → {

x(t)(1), T (1)
}

...

γ(N)

f0
→ Eq. (4) → {

x(t)(N), T (N) = Ttarget

}

Therefore, the proposed method for solving (6) is about N
times faster than the brute-force approach.
In contrast to [1], our formulation is general, as it

works with a control voltage b(γf0 ≡ Vctrl) or a con-
trol current b(γf0 ≡ Ictrl) as well as any circuit pa-
rameter that affects the oscillation frequency, such as
a tank capacitor q

(
x(t), γf0 ≡ Ctank

)
, MOSFET width

f
(
x(t), γf0 ≡ W

)
, q

(
x(t), γf0 ≡ W

)
, etc.

III. NUMERICAL METHODS FOR STEADY-STATE
ANALYSIS WITH A SPECIFIED OSCILLATION FREQUENCY

In this section numerical methods for computing the oscil-
lator steady-state with a specified oscillation frequency based
on a discrete-time oscillator description are presented.

A. Discrete-Time Oscillator Equations

Analysis of nonlinear oscillators using the continuous-time
representation (4) is impractical. For numerical time-domain
PSS analysis, time is discretized, and the time-derivative
operator is replaced by a finite-difference approximation. As
an example, using uniformly spaced timepoints t i = ih, i ∈ N

and applying the backward Euler method, a simple discrete
counterpart of (4) is⎧⎨

⎩
1
h (qi − qi−1) + fi + b = 0, i = 1, . . . , n
x0 = xn

ϕ(x0) = 0
(7)

where

qi = q(xi, γf0), xi ≡ x(ti),
fi = f(xi, γf0), ti = ih,

b = b(γf0), h = h(T ) = T/n.

The discrete-time description in (7) is a system of nm+m+1
nonlinear algebraic equations. The equations are written in
terms of (n + 1)m PSS waveform samples xi, i = 0, . . . , n,
the circuit parameter γf0 , and the oscillation period T . As
proposed in Section II-B the circuit parameter γf0 and xi

are the unknowns, and the oscillation period T is a known
parameter.

B. Finite Difference Method

The equations in (7) can be written in the following form⎡
⎢⎢⎢⎢⎢⎣

1
h (q1 − qn ) + f1 + b
1
h (q2 − q1 ) + f2 + b

...
1
h (qn − qn−1) + fn + b

ϕ(xn)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦

(8)

Note that the periodicity constraint x0 = xn is not ex-
plicitly present in the above system. The periodicity con-
straint equations were used to eliminate x0 from the list
of unknowns. The remaining nm + 1 equations represent a
finite difference formulation of the proposed PSS analysis.
Denoting the left hand side of (8) by Ffd(x1, . . . , xn, γf0),
Ffd : R

m × . . . × R
m︸ ︷︷ ︸

n

×R → R
nm+1, we rewrite the finite

difference system as

Ffd(x1, . . . , xn, γf0) = 0 (9)

This system of nonlinear equations can be solved using the
Newton-Raphson iteration

Jfd

(
X(k)

) [
X(k+1) − X(k)

]
= −Ffd

(
X(k)

)
(10)
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Jfd(x1, . . . , xn, γf0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
hC1 + G1 − 1

hCn
1
h

(
∂q1
∂γf0

− ∂qn

∂γf0

)
+ ∂f1

∂γf0
+ db

dγf0

− 1
hC1

1
hC2 + G2

1
h

(
∂q2
∂γf0

− ∂q1
∂γf0

)
+ ∂f2

∂γf0
+ db

dγf0

. . .
. . .

...
− 1

hCn−1
1
hCn + Gn

1
h

(
∂qn

∂γf0
− ∂qn−1

∂γf0

)
+ ∂fn

∂γf0
+ db

dγf0

0 · · · 0 ∂ϕ(x)
∂x

∣∣∣
xn

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where k is the iteration index, X = [x1, . . . , xn, γf0 ]T

is the vector of the finite difference unknowns,
Jfd(x1, . . . , xn, γf0) = ∂Ffd/∂X is the Jacobian matrix,
Jfd : R

m × . . . × R
m︸ ︷︷ ︸

n

×R → R
(nm+1)×(nm+1), given

by (11). The Jacobian matrix is defined in terms of C i and
Gi, the capacitance and conductance matrices

Ci =
∂qi

∂xi
=

∂q(x, γf0)
∂x

∣∣∣∣
xi

, Ci : R
m × R → R

m×m (12)

Gi =
∂fi

∂xi
=

∂f(x, γf0)
∂x

∣∣∣∣
xi

, Gi : R
m × R → R

m×m (13)

For large problems, fast preconditioned iterative methods
[1], [6] are employed to solve the linear system in (10).
The last column of the Jacobian matrix in (11) requires

∂q/γf0 , ∂f/γf0 , and db/dγf0 . These derivatives with respect
to the frequency-tuning parameter can be obtained analytically
or numerically from device models.
The Newton-Raphson method is a method with local con-

vergence, and therefore the initial guess must be close enough
to the solution. Particularly, the initial guess for the circuit
parameter γf0 must be such that the circuit oscillates. Even
with a good initial guess and existence of a solution, it is
possible that the circuit stops being an oscillator in the middle
of the Newton-Raphson iterative loop. Such a situation is
untypical for the conventional PSS analysis, and it requires
special treatment to recover, such as roll-back and damping.
There may be no solution to the problem in (6), which means
that the circuit can not oscillate at the desired frequency,
independent of the parameter value.

IV. EXAMPLES AND RESULTS

We have implemented the PSS analysis with a specified
oscillation frequency in our Matlab-based circuit simulator,
and Berkeley Design Automation’s RF FastSPICE simulator.
In this section, simulation results for a cross-coupled LC-tank
oscillator and a three-stage ring oscillator are presented. The
simulation is done in two steps. First, a circuit is simulated
using the PSS analysis with a specified frequency

TSF → PSS specified frequency → {
xiSF , γ

∗
f0

}

Second, the conventional PSS analysis is used with the circuit
parameter value γ∗

f0
found in the first step

γ∗
f0

→ conventional PSS → {
xiC , TC

}

The two sets of results, as will be shown, are consistent
with each other, i.e., TSF ≈ TC , and xiSF ≈ xiC . The mismatch
between TSF and TC will be shown to be within the relative
simulation tolerance of εrel =10−3.

A. Cross-coupled LC-tank Oscillator

Consider an NMOS cross-coupled LC-tank oscillator
shown in Figure 1. The tank parameters L1 = L2 = 1nH, and

5V

on

L1

1

op

C1 C2 L2

Fig. 1. Schematic of an NMOS cross-coupled LC-tank oscillator.

C1 = C2 = 1pF define the oscillation period T = 200.4ps.
Now we find the value of the tank capacitors γf0 ≡ C1 = C2

such that the oscillation period TSF is 150ps. The circuit was
analyzed by a PSS analysis with a specified frequency

TSF = 150ps
�����

→ PSS specified frequency → {
xiSF , γ

∗
f0

}

The solution γ∗
f0

= 560.32fF was verified by the conventional
PSS analysis

γ∗
f0

→ conventional PSS → {
xiC , TC = 149.99999993ps

��������������

}

As can be seen, TSF , and TC match within the simulation error
tolerance of εrel =10−3. The two families of PSS waveforms
xiSF , and xiC in Figure 2 are also in good agreement.

B. Three-Stage Ring Oscillator

The three-stage ring oscillator in Figure 3 is a chain of
three identical inverters connected in a loop. The oscillation
frequency is set by the gain and delay of the inverter stage.
One way to change the oscillation frequency is to alter the
MOSFET sizes. Let the width of the p-channel devices be
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Fig. 2. PSS waveforms of the NMOS cross-coupled LC-tank oscillator.

5V

Mp1 Mp2 Mp3

1 2 3

C1 C2 C3

Fig. 3. Schematic of a three-stage ring oscillator.

γf0 ≡ WMp1 = WMp2 = WMp3 such that the oscillation
period TSF is 2ns. The circuit was analyzed by the PSS analysis
with a specified oscillation frequency starting from an initial
state of 19.463µm, corresponding to T = 2.5ns

TSF = 2.000ns
������

→ PSS specified frequency → {
xiSF , γ

∗
f0

}

The solution γ∗
f0

= 30.477µmwas verified by the conventional
PSS analysis

γ∗
f0

→ conventional PSS → {
xiC , TC = 1.9999998ns

�����������

}

Oscillation periods TSF and TC , as well as the two families of
PSS waveforms xiSF and xiC in Figure 4 are in good agreement.
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Fig. 4. PSS waveforms of the three-stage ring oscillator.

Another way to change the oscillation frequency is to
alter the size of capacitors. Let us find the capacitance value
γf0 ≡ C1 = C2 = C3 such that the oscillation period TSF

is 2ns. The circuit was analyzed by the PSS analysis with

a specified oscillation frequency starting from an initial state
of 10fF, corresponding to T = 2.5ns

TSF = 2ns
���

→ PSS specified frequency → {
xiSF , γ

∗
f0

}

The solution γ∗
f0

= 7.9559fF was verified by the conventional
PSS analysis

γ∗
f0

→ conventional PSS → {
xiC , TC = 1.99999999993ns

���������������

}

Oscillation periods TSF and TC , as well as the two families of
PSS waveforms xiSF and xiC in Figure 5 are in good agreement.
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Fig. 5. PSS waveforms of the three-stage ring oscillator.

V. CONCLUSION

In many applications, the oscillator fundamental frequency
is a given design specification. We have presented a gen-
eral formulation and a numerical method for oscillator PSS
analysis with a specified oscillation frequency. This analysis
finds the value of a circuit parameter that results in the circuit
oscillating at the desired frequency. The proposed formulation
is general and handles any frequency-tuning circuit parameter.
Our method is considerably faster than brute-force search-
based approaches that employ the conventional PSS analysis.
Simulation results show that the proposed PSS analysis is in
good agreement with the conventional PSS analysis.
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