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Abstract—A new oscillator sensitivity analysis that predicts the impact
of parameter variations of a VCO in a PLL is presented in this paper.
Sensitivities of an oscillator’s steady-state performance to design, process,
or environmental parameter variations can be accurately and efficiently
computed with the proposed analysis.

I. INTRODUCTION

Analysis techniques that can predict the impact of parameter
variations on circuit performance are important for circuit design.
They not only provide information about parameters that are critical
in achieving the specifications, but also pave the way for design
optimization. For an oscillator, an important block in communication
circuits, the sensitivities of the periodic steady-state (PSS) solution
and the perturbation projection vector (PPV) are needed to evalu-
ate the impact of process and environmental parameter variations.
Sensitivity analysis for free-running oscillators has been previously
developed in [1].
However, in a phase-locked loop (PLL), the oscillation frequency

of a voltage-controlled oscillator (VCO) is specified by the reference
frequency and division settings. In a closed-loop configuration, VCO
parameter variations in a VCO have no effect on the oscillation
frequency as the PLL adjusts the control voltage to keep the frequency
unchanged. More importantly, given a parameter variation, the PSS
solution and the PPV of closed-loop and free-running oscillators vary
in a different manner. Therefore, the sensitivity analysis for free-
running oscillators as described in [1] can not be used to analyze
oscillators in a PLL, and an alternative formulation is needed.
In this paper, a sensitivity analysis that is applicable for oscillators

with a fixed oscillation frequency (closed-loop oscillator) is presented.
The new sensitivity analysis is based on the PSS analysis for
oscillators with a specified oscillation frequency (PSS-SF) [2] and
also can be used in oscillators where the oscillation frequency is a
design specification, and the control voltage is not an appropriate
frequency-tuning parameter [2]. Instead, the tank capacitor or the
device size in a delay cell is used as a frequency tuning-parameter in
LC or ring oscillators, respectively. If a design parameter is changed,
the frequency-tuning parameter must be changed accordingly, such
that the oscillation frequency meets the design specification. The
change in the frequency-tuning parameter, as well as the PSS solution
and PPV can be predicted with the alternative sensitivity analysis
presented in this paper.
The PSS-SF analysis for oscillators and PPV are reviewed in Sec-

tion II. In Section III, continuous-time descriptions of an oscillator’s
PSS and PPV sensitivities are presented. Sensitivity of a ring VCO
is analyzed in Section IV. It is shown how the oscillator sensitivity
analysis can be used in applications such as predicting the impact
of VCO parameter variations, and VCO macromodeling for fast PLL
analysis. Finally, the paper is concluded in Section V.

II. FUNDAMENTAL OSCILLATOR CHARACTERISTICS

In this section, the periodic steady-state and the perturbation
projection vector of oscillators are defined. A continuous-time de-
scription of these fundamental oscillator characteristics is presented.

A. Periodic Steady State (PSS)

Any nonlinear oscillator circuit can be modeled as a set of m
differential-algebraic equations (DAEs) given by

d

dt
q
`
x(t), γf0

´
+ f

`
x(t), γf0

´
+ b(γf0

) = 0 (1)

where

t ∈ R : time, independent variable,
γf0

∈ R : frequency-tuning parameter,
x : R → R

m : oscillator state variables,
q : R

m
× R → R

m : contribution of reactive components,
f : R

m
× R → R

m : contribution of resistive components,
b : R → R

m : independent sources.

The T -periodic solution x(t) of DAEs in (1) is called the PSS solution
if it satisfies x(t) = x(t + T ). This periodicity constraint can be
expressed as

x(0) = x(T ) (2)

Notice that if x(t) is a PSS solution, then x(t + ∆t), ∀∆t is also
a valid PSS solution. A unique isolated solution can be selected by
imposing a phase condition

ϕ
`
x(0)

´
= 0, ϕ : R

m
→ R (3)

One possible phase condition is to let a component of x(0) be a fixed
value.
The oscillator PSS is uniquely defined by (1), (2), and (3), resulting
in the continuous-time equations for the oscillator in the steady-state

8><
>:

d
dt

q
`
x(t), γf0

´
+ f

`
x(t), γf0

´
+ b(γf0

) = 0

x(0) = x(T )

ϕ
`
x(0)

´
= 0

(4)

This is a periodic boundary value problem (BVP), a special case of a
two-point BVP [4]. Given the desired value of the oscillation period
T = Ttarget, the PSS-SF analysis finds the PSS solution xs and the
value of the frequency-tuning parameter γf0

by solving (4) in the
time domain by the finite difference, or shooting methods, as well as
in the frequency domain by the harmonic balance method [2].
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B. Perturbation Projection Vector (PPV)

The PPV v1(t), v1 : R → R
m is a T -periodic vector that

quantitatively describes how additive noise is converted by the
oscillator into phase deviation [3].
Consider a system of m linear DAEs in x(t)

d

dt

`
C(t)x(t)

´
+ G(t)x(t) = 0 (5)

with T -periodic coefficients

C(t) ≡ C
`
xs(t), γf0

´
=

∂q(x, γf0
)

∂x

˛̨̨
˛
xs(t)

, C : R
m

× R → R
m×m

and

G(t) ≡ G
`
xs(t), γf0

´
=

∂f(x, γf0
)

∂x

˛̨̨
˛
xs(t)

, G : R
m

× R → R
m×m

known as the capacitance and conductance matrices, respectively. The
system in (5) is obtained by differentiation of (1) with respect to x
at the PSS solution. The corresponding adjoint system of m linear
DAEs in y(t) is given by

CT (t)
d

dt
y(t) − GT (t)y(t) = 0 (6)

The only periodic basis for the solution to (6) is the PPV v1(t) [3].
A properly scaled PPV is selected by requiring that

−vT
1 (t)C(t)ẋs(t) = 1, ∀t (7)

The oscillator PPV is defined by the system of linear DAEs in y(t)8><
>:

CT (t) d
dt

y(t) − GT (t)y(t) = 0

y(0) = y(T )

−yT (0)C(0)ẋs(0) = 1

(8)

which ensures that the solution v1(t) satisfies the adjoint system, is
periodic, and is properly scaled. The PPV is found by solving (8)
directly in the time or frequency domains [3], or by reducing it to
an initial value problem (IVP) [3].

III. SENSITIVITY ANALYSIS FOR OSCILLATORS
WITH A SPECIFIED FREQUENCY

An oscillator’s PSS and PPV can change in response to a change
in the design, process, or environmental parameters of an oscillator.
The value of a frequency-tuning parameter also changes to keep
the specified oscillation frequency unchanged. In this section, the
sensitivities of these fundamental oscillator characteristics to the
parameter are defined. A continuous-time mathematical description of
PSS and PPV sensitivities for oscillators with a specified frequency
is derived. This is accomplished by differentiating the continuous-
time oscillator equations presented in Section II with respect to the
parameter.
Let γp ∈ R be an oscillator design parameter, such as MOSFET

geometry parameters WM , LM , values of passive components R,
L, C, process parameters, or environmental parameters, such as
temperature, power supply voltage, etc. The oscillator component
contributions q, f , their derivatives C, G, independent sources b,
the frequency-tuning parameter γf0

, PSS and PPV waveforms xs, v1

are now functions of γp, and the specified period T = Ttarget does
not depend on γp.
The sensitivity of the frequency-tuning parameter γf0

with respect
to γp, evaluated at a specific value of γp = γ∗

p , is the rate at which

γf0
changes with respect to a small change ∆γp in γp and is given

by
dγf0

(γp)

dγp

˛̨̨
˛
γ∗

p

= lim
∆γp→0

γf0
(γ∗

p + ∆γp) − γf0
(γ∗

p)

∆γp

(9)

Consider a T -periodic waveform s(t, γp), which can be the PSS
waveform xs, or the PPV waveform v1. The sensitivity of this
waveform with respect to γp is given by

ds(t, γp)

dγp

˛̨̨
˛
γ∗

p

= lim
∆γp→0

∆ts

∆γp

, ∀t (10)

with

∆ts = s(t, γ∗

p + ∆γp

´
− s(t, γ∗

p) (11)

Thus, the PSS and PPV sensitivity analyses for oscillators with
a specified frequency find the sensitivity of the frequency-tuning
parameter dγf0

/dγp as in (9), and T−periodic sensitivities of PSS
and PPV waveforms dxs/dγp and dv1/dγp as in (10).
The sensitivity analysis for free-running oscillators [1] uses the
normalized time τ as the independent variable. In the sensitivity
analysis for oscillators with a specified frequency there is no need to
use the normalized time, as the changes in γp and γf0

compensate
for each other and the oscillation period T remains unchanged.

A. Periodic Steady-State Sensitivity Analysis

The PSS sensitivity for oscillators with a specified frequency is
obtained by a differentiation of the PSS-SF equations in (4) with
respect to the parameter γp at the steady-state xs. Recall that not
only x, and γf0

but also q, f , and b are functions of γp.
The contribution of the resistive circuit components to (4) depend
on γp directly, as well as indirectly through the PSS waveform xs and
the frequency-tuning parameter γf0

that are affected by γp. Therefore,
the total derivative of f with respect to γp is composed of three terms

d

dγp

h
f

`
x(t, γp), γf0

(γp), γp

´i

=
∂f

∂γp| {z }
1

+ G ·
dx

dγp| {z }
2

+
∂f

∂γf0

·
dγf0

dγp| {z }
3

(12)

which have the following interpretations:
1. Direct effect of parameter γp on f . Resistive circuit components
that directly depend on γp, such as a resistor with resistance
being the parameter γp ≡ R, contribute to this term.

2. Chain effect of parameter γp on f caused by a change in the PSS
waveform xs. Resistive circuit components, such as a resistor,
or a MOSFET, contribute to this term.

3. Chain effect of parameter γp on f caused by a change in the
frequency-tuning parameter γf0

. The change in γf0
compensates

for the change in the parameter γp to keep the specified
oscillation period unchanged.

The total derivative of the contribution of the reactive circuit
components with respect to parameter γp is expressed similar to (12).
Therefore, the PSS sensitivity equations for oscillators with a
specified frequency are given by a system of linear DAEs that
represent a BVP in dx/dγp and dγf0

/dγp8>>><
>>>:

d
dt

`
C dx

dγp

´
+ G dx

dγp
+ ∂

∂γf0

h
dq

dt
+ f + b

i
dγf0

dγp
= −RPSS(t)

dx(0,γp)

dγp
−

dx(T,γp)

dγp
= 0

∂
∂x

ϕ(x)
˛̨
x(0,γp)

d
dγp

x(0, γp) = 0

(13)
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where
RPSS(t) =

∂

∂γp

hdq

dt
+ f + b

i
(14)

is a periodic forcing term that depends on the choice of γp.
Computation of PSS sensitivity requires a PSS-SF analysis to be

first performed to obtain the PSS waveforms xs, and the value of
the frequency-tuning parameter γf0

. Assuming that the underlying
PSS-SF analysis in based on the Newton-Raphson method, the
periodic matrix coefficients C, and G in (13) are also available. The
derivatives in (13) ∂[q̇ + f + b]/∂γf0

and (14) ∂[q̇ + f + b]/∂γp are
obtained from device models at the steady-state xs.
Once assembled, the continuous-time PSS sensitivity equations

in (13) can be solved in the time domain by the finite-difference,
or shooting methods, as well as in the frequency domain by the
harmonic balance method for dxs/dγp, and dγf0

/dγp.
In optimization problems, the gradient of an objective function

∇Fobj with respect to a P -vector of design parameters [γ1, . . . , γP ]T

is often needed. In this case, (13) must be solved P times with
different forcing terms RPSS to compute PSS sensitivities with respect
to all optimization parameters γp, p = 1, . . . , P . The periodic
coefficients C, G, and ∂[q̇+f+b]/∂γf0

are properties of the periodic
steady-state, and do not depend on the choice of parameter γp.
The PSS sensitivity DAEs in (13) are linear, and therefore, easier

and faster to solve than the nonlinear DAEs for the PSS-SF analysis
in (4). Therefore, the proposed PSS sensitivity analysis for oscillators
with a specified oscillation frequency is more efficient compared to
finding a numerical approximation of PSS sensitivity, which requires
an additional nonlinear PSS-SF analysis with a perturbed value of
the parameter. With multiple parameters, this is a significant benefit
of the proposed PSS sensitivity analysis.

B. Perturbation Projection Vector Sensitivity Analysis

The PPV sensitivity dv1/dγp is the solution of the linear system
of DAEs in dy/dγp8>><

>>:
CT d

dt

dy

dγp
− GT dy

dγp
= −RPPV(t)

dy(0,γp)

dγp
−

dy(T,γp)

dγp
= 0

[Cẋs]
T dy(0,γp)

dγp
= −v1

T d
dγp

[Cẋs] , t = 0

(15)

with
RPPV(t) =

dCT

dγp

dv1

dt
−

dGT

dγp

v1 (16)

that is obtained by differentiation of the PPV description in (8) with
respect to γp at y = v1. Not only y but also C, G, xs, and γf0

have
to be treated as functions of γp in order to obtain (15).
The total derivative of the capacitance matrix with respect to

parameter γp is expressed similar to (12)
d

dγp

C(x, γf0
, γp) =

∂C

∂γp

+
∂C

∂x
·

dx

dγp

+
∂C

∂γf0

·
dγf0

dγp

(17)

with
∂C

∂x
·

dx

dγp

≡

mX
j=1

„
∂C

∂xj

·
dxj

dγp

«
(18)

where xj is the j-th entry of x. The expression for the total derivative
of the conductance matrix with respect to γp is similar to (18). These
derivatives are obtained from device models at the steady-state xs.
Computation of the PPV sensitivity requires PSS (or PSS-SF) and

PPV analyses to be first performed to obtain v1, C, G, and xs(0, γp)
in (15) and (16). The sensitivities dγf0

/dγp, and dxs/dγp required
in (15) and (18) are obtained from the PSS-SF sensitivity analysis
described in Section III-A.

Once the BVP in (15) is assembled, the PPV sensitivity dv1/dγp

is obtained by solving it in the time or frequency domains, or by
reducing it to an IVP.

IV. EXAMPLES AND RESULTS
We have implemented the PSS and PPV sensitivity analyses for
closed-loop oscillators in our Matlab-based circuit simulator, and in
Berkeley Design Automation’s RF FastSPICE.
In this section the sensitivity of a ring VCO is analyzed using
a time-domain numerical method. It is shown that the PSS and
PPV sensitivities can provide valuable information for predicting
the impact of VCO parameter variations on PLL performance. In
addition, a VCO phase macromodel can be generated that accurately
accounts for these variations.
The oscillator under consideration is a three-stage ring VCO in
Figure 1 consisting of three identical inverters, and a control device
Mc.

ctrlx

ctrlV

−

+

ddV

+

−

outx

cM

Fig. 1. Schematic of a three-stage ring VCO.

Consider a simple PLL with a divider of N = 1. In the PLL,
the control voltage Vctrl settles to 3.61 V, such that the oscillation
frequency of the VCO f0 = 1/T is the same as the reference
frequency fref = 1 GHz, i.e., the PLL is in lock.
Next, we analyze how the PLL performance is affected by a

20 % variation in the VCO parameter γp ≡ Wc, the width of the
control device. The designed value of the control device width is
W ∗

c = 18 µm, and the variation is ∆Wc = 3.6 µm.
The VCO sensitivity analysis with the control voltage as a
frequency-tuning parameter γf0

≡ Vctrl is used to obtain the
sensitivity of the control voltage

dVctrl

dWc

=
dγf0

dγp

= 27.4
mV
µm

This sensitivity allows us to predict the value of the control voltage
in the PLL with parameter variation as a linear approximation

Vctrl(W
∗

c ) + ∆Wc
dVctrl

dWc

= 3.61 V + 3.6 µm · 27.4
mV
µm

= 3.71 V

This value is close to actual value of the control voltage
Vctrl(W

∗

c + ∆Wc) = 3.70 V, found from a PSS-SF analysis, in
which the VCO with parameter variation oscillates at 1 GHz.
Another important characteristic of the VCO is the PPV. The PPV

v1Vdd
corresponding to the Vdd equation is a measure of how much

noise from the power supply is projected into the phase deviation.
Therefore, a VCO design with the smallest PPV magnitude has the
best power supply rejection. Figure 2 shows the PPV of the original
VCO v1Vdd

(W ∗

c ) and the predicted PPV of the VCO with parameter
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variation v1Vdd
(W ∗

c ) + ∆Wc · dv1Vdd
/dWc, obtained with the use

of the PPV sensitivity analysis. It is seen that the predicted PPV accu-

0 1/3 2/3 1

−1.4

−1.3

−1.2

−1.1

Time [ns]

P
P
V

[V
o
lt
s-

1
]

v1Vdd
(t, W ∗

c )

v1Vdd
(t, W ∗

c + ∆Wc)

v1Vdd
(t, W ∗

c ) + ∆Wc
dv1dd

dWc

v1Vdd
(t, W ∗

c + ∆Wc) - for a free-running VCO

Fig. 2. The PPV for the Vdd equation of the original VCO, and the VCO
in the presence of parameter variation ∆Wc. The PPV of the VCO with
parameter variation is well-matched by the PPV predicted with the use of the
sensitivity analysis for the closed-loop VCO. Given a parameter variation, the
PPV of closed-loop and free-running VCOs change in a different manner.

rately matches the actual PPV v1Vdd
(W ∗

c + ∆Wc) of a VCO with
parameter variation, thereby eliminating the need for an additional
PPV analysis. Note that the variation ∆Wc causes the PPV v1Vdd

to
increase in magnitude. Therefore, the VCO, and, consequently, the
PLL are more sensitive to the power supply noise.
In a free-running oscillator parameter variation affects the oscilla-

tion period rather than the frequency-tuning parameter. Consequently,
as shown in Figure 2, the PPV of closed-loop and free-running VCOs
change in different ways. This shows that the VCO with a specified
frequency cannot be analyzed with the method presented in [1].
PPV-based VCO phase macromodels can be used to speed-up the

transient simulation of a PLL by two orders of magnitude [5]. The
sensitivity analysis can be used to generate a VCO phase macromodel
that captures the effect of parameter variations. This macromodel
eliminates the need for additional PSS-SF and PPV analyses for each
set of parameter values in a Monte-Carlo analysis. The macromodel
computes the phase deviation based on the predicted PPV. During
a transient simulation of the PLL with the VCO macromodel, the
difference between the voltage at the control node xctrl(t), and the
predicted control voltage is treated as a perturbation

bnVctrl
(t) = xctrl(t) −

»
Vctrl(W

∗

c ) + ∆Wc
dVctrl

dWc

–

The results from a transient analysis of a PLL with the original
transistor-level VCO (without any parameter variation), the transistor-
level VCO, and the macromodel of a VCO in the presence of
parameter variation∆Wc and power supply noise bnVdd

(t) are shown
in Figure 3. The control and output voltages of the PLL are shown in
Figures 3(b) and (c), respectively. It is seen that the VCO macromodel
based on the proposed sensitivity analysis allows us to perform a fast
transient simulation of a PLL in the presence of parameter variations
without a significant loss in accuracy.

V. CONCLUSION
We have presented a continuous-time formulation of sensitivity

analysis for oscillators with a specified frequency. The new sensitivity
formulation enables the sensitivity calculation for oscillators in a PLL
and those with a specified oscillation frequency. The new analysis is
a useful tool for predicting the impact of parameter variations of a
VCO in a PLL, macromodeling, and design optimization.
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Fig. 3. (a) Power supply voltage noise, (b) PLL control voltage, and (c) PLL
output voltage of the original PLL, and the PLL in the presence of parameter
variation ∆Wc. The transient response of the PLL with parameter variation
from transistor-level simulation is in good agreement with the simulation of
the VCO macromodel based on the VCO sensitivity analysis.
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