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Abstract—A 0.9 V third-order double-sampled delta-sigma
audio ADC is presented. A new method using a combination
of a switched-RC technique and a floating switched-capacitor
double-sampling configuration enabled low-voltage operation
without clock boosting or bootstrapping. A three-level quantizer
with simple dynamic element matching was used to improve
linearity. The prototype IC implemented in a 0.13 um CMOS
process achieves 92 dB DR, 91 dB SNR and 89 dB SNDR in a
24 kHz audio signal bandwidth, while consuming 1.5 mW from a
0.9 V supply. The prototype operates from 0.65 V to 1.5 V supply
with minimal performance degradation.

Index Terms—Audio ADC, delta-sigma ADC, double sampling,
low voltage, switched-RC.

I. INTRODUCTION

HE demand for portable multimedia systems and the con-
T tinued down-scaling of device dimensions resulted in rapid
improvement in the performance of integrated systems. In order
to reduce power consumption and the electric fields that ac-
company device scaling, it is necessary for circuits to operate
from reduced supply voltages. Integrating both analog and dig-
ital circuits in the same process and operating with the same
power supply level provides important advantages such as low
cost, high performance, reduced electromagnetic interference,
and portability. However, reduced supply voltage severely limits
the achievable dynamic range of analog circuits. High dynamic
range and low power are increasingly demanded in multimedia
and communication applications. Thus, the design of analog cir-
cuits naturally comes with the challenge to maintain the de-
sired levels of performance as the supply is lowered. A reduced
supply voltage generally results in significant power savings in
digital circuits. However, the power consumed in analog circuits
is likely to increase because the reduced supply voltage limits
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Fig. 1. Double-sampling switched-capacitor integrator circuit.

the analog signal and mandates lower noise. For this reason, de-
signing high-performance analog-to-digital converters (ADCs)
that operate with a low voltage supply and low power consump-
tion is a challenging task.

Previously proposed techniques for low-voltage circuit de-
sign [1]-[7] enabled ADCs to operate with low-voltage power
supplies. However, these techniques have rarely resulted in
low power consumption which is required for portable applica-
tions. Double-sampling scheme (DSS) is one possible solution
for reducing power consumption. However, it requires com-
plex bootstrapping schemes in low-voltage systems because
previously proposed non-bootstrapping design techniques
such as switch-opamp and opamp-reset-switching techniques
[4]-[6] are applicable only to single-sampling scheme (SSS).
This paper presents a high-performance audio ADC with a
low-voltage DSS [8]. A fully-differential switched-RC (SRC)
technique is employed in order to avoid clock bootstrapping and
to overcome the issues associated with the pseudo-differential
implementation in [7].

The paper is organized as follows. Conventional DSS in delta-
sigma ADCs and floating switched-capacitor configuration are
described in Section II. Section III presents the proposed low-
voltage double-sampling technique. Section IV discusses the
proposed delta-sigma ADC architecture. Section V describes
the circuit implementation, followed by the description of mea-
surement results in Section VI. Finally, conclusions are drawn
in Section VIIL.

II. DOUBLE SAMPLING TECHNIQUE

Double sampling techniques [9], [10], [12]-[14] can achieve
twice the sampling frequency in switched-capacitor cir-
cuits without extra requirements for opamp settling time.
Alternatively, the techniques allow a halving the clock fre-
quency thereby reducing power consumption. Consequently,

0018-9200/$25.00 © 2008 IEEE
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Fig. 2. Path gain mismatch effect in a double-sampled first-order delta-sigma ADC. (a) Block diagram of an input signal path. (b) Gain mismatch effect on the

input signal path. (c) Gain mismatch effect on the feedback path.

double-sampling techniques can be very useful for low-power
switched-capacitor circuit designs. A switched-capacitor in-
tegrator (SCI) that uses double sampling is shown in Fig. 1.
During phase ¢1, CS1 samples the input and CS2 transfers the
charge that was sampled previously to CF. During ¢2, CS1
transfers its charge to CF, and CS2 samples the input. Thus,
the output is updated during both phases. The operation speed
is twice as fast as the conventional single sampling integrator.
However, this technique has a serious disadvantage caused by
the path gain mismatch.

A. Path Gain Mismatch

If CS1 is not exactly equal to CS2, the change in the sam-
pling capacitance from one phase to the next phase modulates
the amount of the stored charge. The input-output relationship
of the integrator with an ideal opamp can be written as

CS
+ C—FVIN(n —-1)

(—1)"ACS
2CS

Vour(n) = Vour(n —1)

Vin(n —=1). ()

where CS = (CS1 + CS2)/2, ACS = CS1 — CS2, and time
n = 0 occurs when ¢2 is high. The last term in (1) contains the
product of the input and (—1)", which is a modulation of the
input by a sampled cosine at frequency fs/2. If CS1 = CS2,
this term is zero, and the circuit acts like an ideal discrete-time
integrator. However, if CS1 # CS2, the integrator output is the
sum of the input Vix(n) and a modulated version of the input.
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Fig. 3. Floating differential SCI.

The path gain mismatch effect is shown in Fig. 2. If the input
is a low frequency signal which is band-limited by an anti-
aliasing filter, the mismatch between CS1 and CS2 causes Vix
to be modulated to a frequency band near the half clock fre-
quency, fs/2. This effect from the input path gain mismatch
is of little consequence, because the noise (modulated signal)
in this high frequency band is greatly attenuated by the digital
low-pass filter. However, the feedback DAC output has a large
high-frequency quantization noise power as shown in Fig. 2(c).
This is mixed down to the baseband due to the mismatch, which
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Fig. 4. (a) A single-sampling switched-RC SCI circuit. (b) ¢1. (c) ¢2.

increases the in-band noise power, hence decreasing the SNR
drastically.

B. Floating Switched Capacitor Configuration

A modified configuration, named here the floating switched
capacitor [14] was proposed to solve the path gain mismatch
problem. As shown in Fig. 3, the SCI updates the input charge
in both phases of the clock. Obviously, the effective sampling
rate is twice the clock frequency. The transfer function of the
fully floating SCI is given by

Vour(z) _ (&)

Vin(2) Cr
As shown in (2), the mismatch AC's does not appear, implying
that the mismatch does not affect the signal processed by the in-
tegrators. On the other hand, the transfer function differs from
that of a conventional SCI. The additional factor 1 + 271! is
included now in the transfer function. The zero at Fis/2 re-

duces the high frequency quantization noise and further allevi-
ates noise folding.

14271
1— 271"

(@)

III. Low-VOLTAGE DOUBLE SAMPLING TECHNIQUE

The double-sampling technique can be applied to many of
the low-voltage design techniques. Clock boosting or bootstrap-
ping [2], [3] can make the double-sampling technique applicable

— i i
N Cs AN
y—w\—n—| 9—— oo

(b)

Rs

(c)

for low-voltage designs. However, they suffer from extra circuit
complexity associated with bootstrapped clock driver. Switched
Opamp [4] and Opamp Reset Switching [5], [6] techniques are
not compatible with double-sampling technique, because the ac-
tive component (opamp) has to work during both phases. On the
other hand the switched-RC technique [7] can provide many ad-
vantages if it is used in a low-voltage double-sampling design.
First, the switched-RC branch provides highly linear sampling
because the passive element R is very linear and constant over all
input voltage unlike the conventional floating switch. Second,
the double-sampling technique can be applied without the need
for clock boosting or bootstrapping. Finally, the double-sam-
pling switched-RC circuit overcomes the drawbacks inherent in
the original form of the switched-RC technique. In summary,
the advantages of double-sampling switched-RC technique are
as follows.

* The double-sampling switched-RC technique provides a
constant input impedance, that of the SCI, because the pre-
vious stage output load condition is kept the same during
both phases.

* The opamp DC gain and the feedback factor in an inte-
grator circuit are the same during both phases, because the
opamp output load condition and closed loop conditions
are the same.
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Fig. 5. (a) A double-sampling switched-RC SCI circuit. (b) ¢1. (c) ¢2.

* The double-sampling switched-RC circuit is less sensitive
to gain error effect than the single sampling scheme.
In order to illustrate this, consider the single-sampled
switched-RC integrator shown in Fig. 4. The output voltage of
this integrator can be written as

1 C
VOL'T(Z) 272 = VOL'T(Z) + O—f . ‘/IN(Z) . (1 — Ot)
C 1
to e V() (1-277) 0

where the gain error factor is

Ron

- fox 4
“ Rs + Ron @

and Roy is the on-resistance of the MS switch.

Fo2p

The output voltage of the integrator in (3) has two non-ideal
terms. The gain reduction factor « in the second term does not
affect the overall linearity of the delta-sigma loop if Roy is very
small and linear. Second, the first-order shaped input in the third
term is added to the input. The third term in (3) can be expressed
as follows:

>'VCI

)

=

Vinewy (2) - (1 - Zﬁ%) =Vour(v-1)(2) - (1 -z

et A
S \Ae+1 A+
1

Ay

Vour(v-1)(2)

where Vin(n) and Vour vy are the input and output signals of
the N'th stage integrator, A; and A, are the amplifier DC gains
in the two clock phases ¢1 and ¢2, and Vo1 is the voltage across
the feedback capacitor C'I of N — 1th stage integrator.
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Fig. 7. Third-order DS delta-sigma ADC topology.

Operational amplifiers are widely used for SCI implementa-
tion. The amplifier DC gains A; and A of single-sampling SCIs
are not the same in the two clock phases. In the circuit of Fig. 4,
the resistor Rg in switched-RC sampling network is an addi-
tional load during ¢1, and this will result in a much lower DC
gain A; than A,. The difference between A; and A is signif-
icant if the output resistance of typical operational amplifier is
in the range from 50 k(2 to 100 k{2, and the resistance value in
switched-RC branch for audio speed operation is in the range
from 5 k€2 to 10 kS2. Even if a delta-sigma ADC has sufficiently
high oversampling ratio (OSR), the third term is not properly
cancelled for the reason explained above. The integrators are
driven by the previous stages which have also different ampli-
fier DC gains during the two clock phases. That will add the
input referred DC offset and a nonlinear factor, because the am-

plifier gain A; in ¢1 is a function of amplifier output voltage
level. However, the additional first-order-shaped term in the pro-
posed DSS, as shown in Fig. 5, can be cancelled with suffi-
ciently high OSR because the gains A; and A, will be almost
same. The gain mismatch between the two clock phases in a
DSS is only affected by the resistor mismatch, which can be
made small. According to SPICE simulation results of SCIs in
this design, the THD of integrator output in SSS SCI and DSS
SCI were —81.9 dB and —107.0 dB. The linearity of DSS is
much better preserved despite the resistive loading imposed by
the switched-RC method because a fixed load is maintained over
both phases (unlike SSS switched-RC).

The fully differential SCI circuit with the proposed
low-voltage double-sampling technique is shown in Fig. 6.
A split switched-RC input branch [7] is used to keep the
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Fig. 8. Proposed low-voltage DS integrator.

common mode level of the integrator constant. During the
integrating phase, half of the sampling capacitor is connected
to Vpp, while the other half is connected to Vgg. This results
in a constant common-mode level of half Vpp for the inte-
grator during both phases, avoiding any need for additional
level-shifting circuits.

IV. PROPOSED ARCHITECTURE

A. Topology Selection

The proposed low-voltage double-sampling technique
combined with switched-RC supports highly linear sam-
pling without floating switch problems. A high-performance
low-voltage double sampled audio AY. ADC was designed
with the proposed technique. The theoretical signal-to-noise
ratio (SQNR) is given by

SQNRy4x = 6.02N + 1.76 + (20L + 10)log10OSR
2L

_1010g107r_

2L +1 ©

where L is the order of a delta-sigma modulator, and N is the
number of quantizer bit resolution. The maximum SQNR equa-
tion is based on many assumptions including no quantization
noise overload, white noise over all input range of quantizer,
no DAC mismatches, ideally shaped noise transfer function,
infinite amplifier gain, etc. By contrast, the practical simulation
results include all possible non-idealities. Thus, the actual

Py o(1.5%)

Py .awp(54%)

Fig. 9. Noise distribution of the delta-sigma ADC.

SQNR ends up being much lower than the theoretical max-
imum SQNR. Single-loop delta-sigma topology offers several
advantages for low-power, low-voltage operation, such as cir-
cuit simplicity and insensitivity to non-ideal circuits. However,
this topology requires a higher order for a given oversampling
ratio (OSR) to achieve high SQNR. System-level simulations
indicate that a third-order 1.5-bit (three-level) single-loop
topology with double sampling offers one of the best tradeoffs
between the required clock frequency, amplifier bandwidth,
and signal-to-noise ratio (SNR) for the target audio ADC. The
block diagram of the single-loop third-order delta-sigma ADC
with a 1.5-bit quantizer is shown in Fig. 7. The loop coefficients
are determined from behavioral simulations and are set to [0.2,
0.3, 0.4]. The modulator with these coefficients is very tolerant
to coefficient mismatches caused by capacitance mismatches
and the inherent gain error of the switched-RC technique.
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One major disadvantage of the conventional double sampling
is noise folding due to path gain mismatch. The path gain mis-
match in the forward signal path does not degrade performance
significantly. However, in the feedback path, it degrades the
SNR due to noise folding into the signal band. The integrator
circuit used in this design is shown in Fig. 8. Double sampling
switched-RC branches are employed in the forward signal path,
while fully-floating switched-capacitor branches that are insen-
sitive to gain mismatch are utilized in both the first and second
feedback paths [14]. The delta-sigma ADC full scale input range
is 1.1 Vpp differential for 0.825 V or higher supply voltage level.
The differential reference voltages are up-scaled to 1.65 Vpp
(VREFP = VDD/2 4+ 0.4125 V, VREFN = VDD/2 —0.4125V)
by a factor of 1.5. For 0.825 V and lower supply voltage, the
reference voltages, Vrerp and Vrppn are same as the supply
voltage and ground. The up-scaled reference voltage results in
reduced size of feedback DAC path capacitors. This results in
two advantages: reduced input referred noise from the feedback
DAC side and better floating switch operations. Conventional
double sampling is used in the third integrator feedback path,

because the use of conventional DSS eliminates the stability
issues caused by the additional pole introduced by the fully-
floating switched-capacitor configuration. Even though the re-
quired SNR is 90 dB, the simulated peak SQNR is 110 dB
for this topology. It is necessary to minimize the quantization
noise contribution in order to leave some margin for other less
predictable noise sources such as flicker, £7'/C, and amplifier
thermal noises.

B. Noise Budgeting

Many performance metrics of data converters such as SNR,
SNDR, and dynamic range (DR) are related to power. Once the
maximum signal power was estimated in system level simula-
tion by deciding the reference voltage level, the allowed total
noise power can be calculated based on the desired DR. The
total noise power can be expressed as

Pxtotal = Pnq + Pxamvp + Prrryc @)
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where Pyiotal 1S the total in-band noise power, Pxq is the
in-band quantization noise power, Pxanp is the in-band ampli-
fier noise power, and Py, is the in-band 7'/ C noise power.
The noise power from DAC reference is ignored, because that
can be easily suppressed in audio applications. As described in
the previous subsection, the quantization noise is already small
enough to be ignored. So, the dynamic range can be written as

_ Povvax o ViRwax 1
DR = =
Pxtotal 2 (Pxamp + Pyeryc)

i

~ ‘/I%\']\/TAX (8)
2 (PNAMP + 2kT/(CS - OSR))

where Vinmax is the maximum input amplitude of the ADC,
and Clg is the sampling capacitance of the first integrator. The
kET/C noise is easily controlled by sizing the capacitors in the
integrators. The sampling capacitance of the first integrator is
6 pF which was decided after minimizing the amplifiers noise.
The amplifier’s noise has two major sources, thermal noise
and flicker noise. The flicker noise in a low-pass delta-sigma
modulator is very critical because it is dominant at low frequen-
cies. Several techniques to reduce or cancel this low-frequency
flicker noise exist, such as correlated double sampling and
chopper stabilization techniques. However, these techniques
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Fig. 13. Measured output spectrum.

require hard-to-implement low-voltage switched-capacitor cir-
cuitry. For this reason, the prototype avoided using flicker noise
suppression techniques by simply increasing the geometric
sizes of those transistors which are the main sources of the
1/ f noise. Then, the thermal noise is the only dominant source
of amplifier noise. The final noise distribution is shown in
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Fig. 9. The power consumption of the first integrator amplifier
is 0.9 mW which is 60% of total power consumption.

C. Simple Dynamic Element Matching Scheme for Three-Level
Quantizer

According to (6), using a three-level (1.5-bit) quantizer and a
three-level DAC can easily improve SQNR by 3 dB, and more
importantly improves the stability of the loop. However, once

the number of the DAC levels is more than two, the DAC is
no longer intrinsically linear. The nonlinear three-level DAC
causes even harmonics of the DSM output in the frequency
domain, unless dynamic element matching (DEM) is used,
which implies extra hardware cost. However, the three-level
DAC allows the use of a simple DEM scheme suitable for
low-voltage operation. In this scheme, the two 1-bit DAC ele-
ments are interchanged whenever the delta-sigma ADC output
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equals the middle code as depicted in Fig. 10. The behavioral
simulation result indicates that the proposed DEM achieves
almost the same performance as that of a perfectly linear DAC.

V. CIRCUIT IMPLEMENTATION

A. Low-Voltage Fully-Differential Opamp

Pseudo-differential opamps are frequently used in
low-voltage applications to overcome the difficulty with re-
alizing the low-voltage common-mode feedback (CMFB)
required for a fully-differential structure. However, the
pseudo-differential configuration suffers from several draw-
backs, including increased noise, higher power consumption,
larger area, and reduced PSRR/CMRR. In order to avoid
these issues, a fully-differential amplifier with a low-voltage
CMFB was employed. The amplifier consists of a folded-cas-
code first stage for low input common-mode voltage, and a
common-source second stage for wide output swing. As shown
in Fig. 11, an additional current source is used to shift the
output common-mode level from Voyn = Vpp /2 to within the
input common-mode range of the folded-cascode single-stage
CMFB amp which is similar in [11].

B. Low-Voltage Comparator Design

Fig. 12 illustrates the circuit diagram of the low-voltage
double-sampled comparator used in the 1.5-bit quantizer. It
consists of a split switched-RC input sampling network, a
preamplifier Al and a level-shifting amplifier A2 along with
the two comparator latches L1 and L2. The decision levels
are set by appropriately scaling capacitors C1 and C2, and the
offset is cancelled at the output of the preamplifier Al. The
input common-mode level of A2 can be set as low as ground
potential. This comparator can be used to realize a low-voltage
multi-level quantizer without needing floating switches. Unlike
the existing low-voltage comparator design in [7], the proposed
comparator can save passive components, make the circuit
simpler and less noisy by removing the summing node and the
additional branch for reference voltage level injection.
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TABLE I
MEASURED PERFORMANCE SUMMARY OF THE AUDIO DELTA-SIGMA ADC
Power supply voltage 0.65V 09V
Power consumption 1.1 mW 1.5 mW
Input range 0.87 Vpp (diff.) | 1.1 Vpp (diff.)
Peak SNR 83 dB 91 dB
Peak SNDR 79 dB 89 dB
Dynamic range 87 dB 92 dB
Signal bandwidth 24 kHz
Sampling frequency 6.144 MHz
Clock frequency 3.072 MHz
Oversampling ratio 128
Active die area 1.6 X 0.9 mm?
Technology 0.13um CMOS

Integrator 2 Integrator 3

~ Integrator 1

Quantizeir
CLK & DEM

Logic

Fig. 17. Chip photograph of the delta-sigma audio ADC.
TABLE II
PERFORMANCE COMPARISON

Vpp | DR | BW | Power | CMOS FOM
[Vl | [dB] | [kHz] | [uW] [um] [dB]
Keskin [5] 1 80 20 5600 0.35 116.3
Ahn [7] 0.6 | 82 24 1000 0.35 125.8
Pun [15] 05| 74 25 300 0.18 123.2
Peluso[16] | 0.9 | 77 16 40 0.5 133.0
Yao[17] 1 88 20 130 0.18 139.9
Thiswork | 0.9 | 92 24 1500 0.13 137.0

VI. MEASUREMENT RESULTS

The ADC was fabricated in a 0.13 ym CMOS technology.
The measured output spectrum with a —6 dBFS 1 kHz sinu-
soidal input signal and a 0.9 V supply voltage is shown in
Fig. 13. The measured SNR and SNDR versus input signal
level characteristics are shown in Fig. 14. Fig. 15 verifies that
the proposed DEM results in improved output linearity. The
ADC can operate with supply voltages in the range of 0.65 V
to 1.5 V with minimal performance degradation, as depicted
in Fig. 16. The measured performance summary is presented
in Table I. This prototype achieves 91 dB SNR, 89 dB SNDR,
and 92 dB dynamic range with a 0.9 V supply voltage. With a
0.65 V supply, 83 dB SNR, 79 dB SNDR, and 87 dB dynamic
range were measured. The chip micrograph is shown in Fig. 17.
The active die area is 1.6 x 0.9 mm?. Table II compares the
proposed delta-sigma ADC with previously reported sub-1-V
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delta-sigma ADCs [5], [7], [15]-[17]. The figure of merit
(FOM) in the table is defined as

BW
FOM = DRgp + 10log10? ®

where DR, P, and BW are dynamic range, power, and band-
width, respectively. Compared to other sub-1-V audio ADCs,
the proposed ADC achieves the highest DR while maintaining
good FOM.

VII. CONCLUSION

A low-voltage AY ADC using double-sampling
switched-RC branches was realized. The low-voltage
double-sampling technique doubles the OSR as compared to
conventional design, without extra power consumption and
without increasing the clock frequency. Thus, this technique
allows power reduction for achieving a given performance.
A prototype 0.9 V 92 dB delta-sigma audio ADC was
implemented in a 0.13 gm CMOS process to prove the validity
of the proposed technique. The measured results verify the
effectiveness of the proposed technique to achieve low-voltage,
low-power, and high-accuracy performance. The prototype
IC includes opamps with a low-voltage CMFB circuits, a
novel low-voltage quantizer circuit, and a low-power DEM for
three-level quantizer.
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