ECE 352 – Signals & Systems II

Catalog Description: Analytical techniques for continuous-time and discrete-time signal, system, and circuit analysis.

Credits: 4 Terms Offered: Winter

Prerequisites: ECE 351 and MTH 306

Courses that require this as a prerequisite: ECE 433, ECE 451, ECE 461, ECE 462, ECE 463, ECE 464, ECE 468, ECE 550

Structure: Three 50-minute lectures per week plus one 110-minute lab per week

Instructors: R. Raich

Course Content:
• Mixed Fourier representations and sampling theorem
• Communications system applications
• Laplace and Inverse Laplace transforms
• Z and Inverse-Z transforms
• MATLAB for signal processing and communications applications

Measurable Student Learning Outcomes:
At the completion of the course, students will be able to…
1. Analyze continuous-time and discrete-time signals and systems in the frequency domain using mixed signal classes. Use MATLAB and laboratory experiments to simulate and analyze signals and systems of these cases (ABET outcomes: A, B, K, M, N)
2. Explore sampling concepts that link continuous-time and discrete-time signals and systems. Use MATLAB and laboratory experiments to simulate and analyze signals and systems for this situation (ABET outcomes: A, B, K, m, n)
3. Apply time-domain and frequency-domain analysis tools to communication system applications (ABET outcomes: A, c, j, K, I, m, n)
4. Analyze continuous-time signals and system responses using the concepts of transfer function representation by use of Laplace and inverse Laplace transforms. Use MATLAB and laboratory experiments to simulate and analyze signals and systems using these transforms (ABET outcomes: A, B, K, M, N)
5. Analyze discrete-time signals and system responses using the concepts of transfer function representation by use of Z and inverse-Z transforms. Use MATLAB and laboratory experiments to simulate and analyze signals and systems using these transforms (ABET outcomes: A, B, K, M, N)

Learning Resources:
• *Introduction to Matlab 7 for Engineers*, W. Palm III, McGraw Hill, 2005 (recommended)
• Amos Gilat, *MATLAB: An Introduction with Applications*, Wiley, 2004 (optional)

Students with Disabilities:
Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS). Students with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through DAS should contact DAS immediately at 737-4098.

Link to Statement of Expectations for Student Conduct:
http://oregonstate.edu/admin/stucon/achon.htm

Revised: 7/15/08
Revised Terms Offered, Course Content and Students with Disabilities: 2/15/11
Revised: 6/1/14